Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Characterization of abnormalities in the visual system of the mutant mouse pearl

GW Balkema Jr, LH Pinto, UC Drager and JW Vanable Jr
Journal of Neuroscience 1 November 1981, 1 (11) 1320-1329; https://doi.org/10.1523/JNEUROSCI.01-11-01320.1981
GW Balkema Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LH Pinto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
UC Drager
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JW Vanable Jr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Mice of the mutant strain pearl (pe/pe) differ from the wild strain by a single gene mutation, which leads to a lightening of the coat color. We tested this strain to see if this mutant gene also expressed itself in one or more visual abnormalities. Pearl mice were found to lack totally the optokinetic nystagmus reflex that was present in every normal mouse that we examined. This lack of optokinetic nystagmus was not due to oculomotor defects, since postrotatory nystagmus was normal. As described for other pigmentation mutants, we found that pearl mutants had a reduced ipsilateral projection to the lateral geniculate nucleus, superior colliculus, and visual cortex. We recorded from single cells in the superior colliculus and found response properties and light sensitivities to be normal over the luminance range at which optokinetic nystagmus was tested. However, at very dim backgrounds (scotopic levels), the incremental sensitivities of these cells in pearl mice were about 100 times lower than those of normal mice. This reduction in sensitivity was restricted to scotopic backgrounds and was not due to abnormalities in either the time course of dark adaptation or the receptive field sizes of single cells. In recordings of the electroretinographic response, both the waveforms and the normalized magnitudes of the A and B waves of pearl were indistinguishable from those of normal mice, which seems to indicate that the cause of pearl's sensitivity defect is located central to the main electrical events in the photoreceptors. The normality of many aspects of the visual system of pearl mice contrasts sharply with the complete absence of optokinetic nystagmus, with the reduced ipsilateral projection, and with the reduced dark sensitivity of the cells in the superior colliculus.

Back to top

In this issue

The Journal of Neuroscience: 1 (11)
Journal of Neuroscience
Vol. 1, Issue 11
1 Nov 1981
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of abnormalities in the visual system of the mutant mouse pearl
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Characterization of abnormalities in the visual system of the mutant mouse pearl
GW Balkema Jr, LH Pinto, UC Drager, JW Vanable Jr
Journal of Neuroscience 1 November 1981, 1 (11) 1320-1329; DOI: 10.1523/JNEUROSCI.01-11-01320.1981

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Characterization of abnormalities in the visual system of the mutant mouse pearl
GW Balkema Jr, LH Pinto, UC Drager, JW Vanable Jr
Journal of Neuroscience 1 November 1981, 1 (11) 1320-1329; DOI: 10.1523/JNEUROSCI.01-11-01320.1981
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.