Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

gamma-Aminobutyric acid concentration, L-glutamate 1-decarboxylase activity, and properties of the gamma-aminobutyric and postsynaptic receptor in cobalt epilepsy in the rat

SM Ross and CR Craig
Journal of Neuroscience 1 December 1981, 1 (12) 1388-1396; DOI: https://doi.org/10.1523/JNEUROSCI.01-12-01388.1981
SM Ross
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CR Craig
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Crude mitochondrial synaptosomal (P2) fractions were used to measure L- glutamate 1-decarboxylase (GAD) activity, and crude synaptic membranes were isolated from rat brains and used to determine gamma-aminobutyric acid (GABA) concentration and postsynaptic GABA receptor binding characteristics in rats with cobalt, copper, or glass implanted in right and left cerebral cortices. Copper was employed as a positive metal control because it elicits a morphological profile similar to that of cobalt but is non-epileptogenic. From tissue adjacent to the lesion, GAD activity was assessed by counting trapped 14CO2 liberated from [14C]glutamate and was reduced maximally to 25% of glass controls 7 days following cobalt insult, a period of peak seizure incidence. No reduction in GAD activity was observed 1 or 21 days after cobalt treatment or at any time period in copper-or glass-treated animals. A radioligand [3H]GABA receptor assay was utilized to determine GABA levels, postsynaptic receptor number (Bmax), and the affinity of the postsynaptic receptor for the ligand (KD) in tissue surrounding the lesion. GABA concentration was reduced maximally to 47% of glass controls 7 days following cobalt implantation. Scatchard plot analysis of tissue adjacent to the cobalt lesion revealed a significant increase in apparent receptor density (Bmax) to 200% of glass controls 7 days after bilateraL cobalt implantation (Bmax = 3.97 +/- 0.83 pmol/mg of protein, cobalt versus 1.36 +/- 0.17, glass control). Moreover, at 7 days, no change in kinetic parameters was noted after copper treatment. From days 7 to 21, the density (Bmax) of postsynaptic GABA receptors in cobalt-treated tissue appears to return slowly to glass control values. Results from the present study suggest that degeneration of the GABA pathway in the frontal cortex of the cobalt-epileptic rat occurs and, coupled with the increased Bmax, may represent a “denervation supersensitivity” phenomenon.

Back to top

In this issue

The Journal of Neuroscience: 1 (12)
Journal of Neuroscience
Vol. 1, Issue 12
1 Dec 1981
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
gamma-Aminobutyric acid concentration, L-glutamate 1-decarboxylase activity, and properties of the gamma-aminobutyric and postsynaptic receptor in cobalt epilepsy in the rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
gamma-Aminobutyric acid concentration, L-glutamate 1-decarboxylase activity, and properties of the gamma-aminobutyric and postsynaptic receptor in cobalt epilepsy in the rat
SM Ross, CR Craig
Journal of Neuroscience 1 December 1981, 1 (12) 1388-1396; DOI: 10.1523/JNEUROSCI.01-12-01388.1981

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
gamma-Aminobutyric acid concentration, L-glutamate 1-decarboxylase activity, and properties of the gamma-aminobutyric and postsynaptic receptor in cobalt epilepsy in the rat
SM Ross, CR Craig
Journal of Neuroscience 1 December 1981, 1 (12) 1388-1396; DOI: 10.1523/JNEUROSCI.01-12-01388.1981
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.