Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Evidence for collateral projections by neurons in Ammon's horn, the dentate gyrus, and the subiculum: a multiple retrograde labeling study in the rat

LW Swanson, PE Sawchenko and WM Cowan
Journal of Neuroscience 1 May 1981, 1 (5) 548-559; https://doi.org/10.1523/JNEUROSCI.01-05-00548.1981
LW Swanson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PE Sawchenko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WM Cowan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Although it has been recognized for some years that each cytoarchitectonic field of Ammon's horn and the subiculum gives rise to a specific pattern of cortical and subcortical projections, it has not been clear whether these various projections arise from different populations of neurons within each field or whether they arise as collaterals from an essentially homogeneous population of cells. We have examined this problem, and the related issue of the origin of the commissural and ipsilateral associational projections of the dentate gyrus, by injecting retrogradely transported fluorescent dyes into two or more of the relevant projection fields in adult rats and subsequently examining the brains for doubly or triply labeled neurons. It is clear from these experiments that at least two of the known efferent projections of field CA1 (to the septum and to the entorhinal cortex) arise from the same pyramidal neurons and also that the commissural, ipsilateral associational, septal, and subicular projections of the other major field of Ammon's horn--field CA3-- similarly are due to collaterals. Double-labeling experiments also indicate that at least 80% of the cells in the deep hilar region of the dentate gyrus give rise to both an ipsilateral (associational) and a crossed (or commissural) projection to the dentate granule cells. In contrast, the projection neurons in the dorsal part of the subiculum form a quite heterogeneous population; cells that project to both the septum and the entorhinal area are intermingled with others that project to one or the other area but not to both. The cortical and cortico-subcortical connections of the hippocampal formation thus appear to be quite different from those of the neo-cortex, and the existence of such an extensive system of collateral projections clearly has important consequences for studies of the development of the hippocampus and of its response to selective deafferentation.

Back to top

In this issue

The Journal of Neuroscience: 1 (5)
Journal of Neuroscience
Vol. 1, Issue 5
1 May 1981
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Evidence for collateral projections by neurons in Ammon's horn, the dentate gyrus, and the subiculum: a multiple retrograde labeling study in the rat
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Evidence for collateral projections by neurons in Ammon's horn, the dentate gyrus, and the subiculum: a multiple retrograde labeling study in the rat
LW Swanson, PE Sawchenko, WM Cowan
Journal of Neuroscience 1 May 1981, 1 (5) 548-559; DOI: 10.1523/JNEUROSCI.01-05-00548.1981

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Evidence for collateral projections by neurons in Ammon's horn, the dentate gyrus, and the subiculum: a multiple retrograde labeling study in the rat
LW Swanson, PE Sawchenko, WM Cowan
Journal of Neuroscience 1 May 1981, 1 (5) 548-559; DOI: 10.1523/JNEUROSCI.01-05-00548.1981
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.