Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

A novel type of nicotinic receptor in the rat central nervous system characterized by patch-clamp techniques

C Mulle and JP Changeux
Journal of Neuroscience 1 January 1990, 10 (1) 169-175; DOI: https://doi.org/10.1523/JNEUROSCI.10-01-00169.1990
C Mulle
URA CNRS 0210 “Neurobiologie Moleculaire,” Department des Biotechnologies, Institut Pasteur, Paris, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JP Changeux
URA CNRS 0210 “Neurobiologie Moleculaire,” Department des Biotechnologies, Institut Pasteur, Paris, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We present a functional characterization of a neuronal nicotinic receptor in the CNS using patch-clamp techniques and a preparation of acutely isolated neurons from the medial habenular nucleus of 10- to 20- d-old rats. The salient pharmacological and electrophysiological properties of this nicotinic response are (1) its association with a channel that is relatively nonselective for cations and has a unitary conductance of 26.2 (+)+/- 5pS at room temperature; (2) its insensitivity to alpha-bungarotoxin and to neuronal bungarotoxin; (3) its activation by the ganglionic nicotinic agonists nicotine, 1,1- dimethyl-4-phenylpiperazinium and cytisine and its blocking by several nicotinic antagonists, mecamylamine, hexamethonium, d-tubocurarine, and dihydro-beta-erythroidine. The combination of these properties has not been reported for any other known type of nicotinic receptor.

Back to top

In this issue

The Journal of Neuroscience: 10 (1)
Journal of Neuroscience
Vol. 10, Issue 1
1 Jan 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A novel type of nicotinic receptor in the rat central nervous system characterized by patch-clamp techniques
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A novel type of nicotinic receptor in the rat central nervous system characterized by patch-clamp techniques
C Mulle, JP Changeux
Journal of Neuroscience 1 January 1990, 10 (1) 169-175; DOI: 10.1523/JNEUROSCI.10-01-00169.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A novel type of nicotinic receptor in the rat central nervous system characterized by patch-clamp techniques
C Mulle, JP Changeux
Journal of Neuroscience 1 January 1990, 10 (1) 169-175; DOI: 10.1523/JNEUROSCI.10-01-00169.1990
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.