Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Phospholipase A2 and 3H-hemicholinium-3 binding sites in rat brain: a potential second-messenger role for fatty acids in the regulation of high-affinity choline uptake

MD Saltarelli, K Yamada and JT Coyle
Journal of Neuroscience 1 January 1990, 10 (1) 62-72; DOI: https://doi.org/10.1523/JNEUROSCI.10-01-00062.1990
MD Saltarelli
Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Yamada
Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JT Coyle
Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The involvement of phospholipase A2 (PLA2) and fatty acid release in the regulation of sodium-dependent high-affinity choline uptake in rat brain was assessed in vitro through the use of the specific binding of 3H-hemicholinium-3 (3H-HCh-3). Addition of arachidonic acid and other unsaturated fatty acids to rat striatal membranes in vitro resulted in a dose-dependent, temperature-independent activation of 3H-HCh-3 binding. Scatchard analysis revealed that these changes in binding result from a 2-fold increase in the affinity and capacity of 3H-HCh-3 binding. Saturated fatty acids, lysophospholipids, and phospholipids did not affect specific 3H-HCh-3 binding. Addition of defatted BSA to membranes, which had been treated previously with arachidonic acid, completely reversed the increase in specific 3H-HCh-3 binding. However, several inhibitors of fatty acid metabolism, including nordihydroguaiaretic acid, indomethacin, catalase, and superoxide dismutase, did not alter arachidonic acid-induced changes in 3H-HCh-3 binding, suggesting that unsaturated fatty acids, and not their metabolites, are directly responsible for the observed activation of specific 3H-HCh-3 binding. Additionally, unsaturated fatty acids dose- dependently inhibited high-affinity 3H-choline uptake in rat striatal synaptosomes, apparently due to the disruption of synaptosomal integrity. The phospholipase A2 inhibitors quinacrine hydrochloride, trifluoperazine, and 4-bromophenacylbromide dose-dependently inhibited potassium depolarization-induced activation of specific 3H-HCh-3 binding in slices of rat brain in vitro. Similarly, both quinacrine and trifluoperazine inhibited the metabolism of phospholipids and the release of fatty acids evoked by either elevated KCl or calcium ionophore A23187. These results support the involvement of PLA2 and subsequent fatty acid release in the increase of 3H-HCh-3 binding in cholinergic neurons and suggest that activation of PLA2 may be the penultimate step in regulating the velocity of sodium-dependent choline transport.

Back to top

In this issue

The Journal of Neuroscience: 10 (1)
Journal of Neuroscience
Vol. 10, Issue 1
1 Jan 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Phospholipase A2 and 3H-hemicholinium-3 binding sites in rat brain: a potential second-messenger role for fatty acids in the regulation of high-affinity choline uptake
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Phospholipase A2 and 3H-hemicholinium-3 binding sites in rat brain: a potential second-messenger role for fatty acids in the regulation of high-affinity choline uptake
MD Saltarelli, K Yamada, JT Coyle
Journal of Neuroscience 1 January 1990, 10 (1) 62-72; DOI: 10.1523/JNEUROSCI.10-01-00062.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Phospholipase A2 and 3H-hemicholinium-3 binding sites in rat brain: a potential second-messenger role for fatty acids in the regulation of high-affinity choline uptake
MD Saltarelli, K Yamada, JT Coyle
Journal of Neuroscience 1 January 1990, 10 (1) 62-72; DOI: 10.1523/JNEUROSCI.10-01-00062.1990
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.