Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive

DH Sanes
Journal of Neuroscience 1 November 1990, 10 (11) 3494-3506; https://doi.org/10.1523/JNEUROSCI.10-11-03494.1990
DH Sanes
Department of Otolaryngology, New York University Medical Center, New York 10016.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

One way in which animals localize sounds along the horizon is by detecting the level differences at the 2 ears. Neurons in the lateral superior olive (LSO) encode this cue by integrating the synaptic drive from ipsilateral excitatory and contralateral inhibitory connections. This synaptic integration was analyzed in 400–500-microns brain slices through the gerbil superior olive. Intracellular recordings from LSO neurons were obtained during the application of independent or conjoint electrical stimuli to the excitatory afferent and inhibitory afferent pathways. Stimulation of ascending fibers from the ipsilateral cochlear nucleus reliably evoked EPSPs and action potentials. Stimulation of the medial nucleus of the trapezoid body (MNTB) consistently evoked IPSPs. The evoked postsynaptic potentials differed in that IPSPs were 2 times the duration of EPSPs. An electrophysiological estimate of convergence indicated approximately 10 excitatory and 8 inhibitory afferents per LSO neuron. MNTB stimulation suppressed synaptically evoked action potentials. When stimulus amplitude was increased to the excitatory pathway, it was generally found that a greater MNTB stimulus was necessary to suppress the action potential. A similar commensurate rise in ipsilateral and contralateral acoustic stimulation was also found to be necessary to give the same criterion response. These results confirm that the LSO can integrate evoked action potentials and IPSPs to encode interaural level. Increasing stimulus voltage was found to decrease both action potential and IPSP latency, suggesting that intensity information may be encoded with temporal cues in the nervous system. It was also found that an evoked burst of action potentials could be inhibited in such a way as to yield intermediate discharge rates, dependent on contralateral stimulus level. Taken together, these results suggest that certain properties related to level-difference coding may be available for intracellular analysis using the brain- slice preparation. Several temporal characteristics of the synaptic potentials, including latency and duration, may play a critical role in this simple computation.

Back to top

In this issue

The Journal of Neuroscience: 10 (11)
Journal of Neuroscience
Vol. 10, Issue 11
1 Nov 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive
DH Sanes
Journal of Neuroscience 1 November 1990, 10 (11) 3494-3506; DOI: 10.1523/JNEUROSCI.10-11-03494.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive
DH Sanes
Journal of Neuroscience 1 November 1990, 10 (11) 3494-3506; DOI: 10.1523/JNEUROSCI.10-11-03494.1990
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.