Abstract
In previous studies, it has been demonstrated that ciliary neurotrophic factor (CNTF) has a potent survival effect on various populations of neurons in culture, in particular, neurons isolated from chick ciliary, dorsal root sensory, and sympathetic ganglia (Barbin et al., 1984). After recent investigations demonstrated that CNTF prevents the degeneration of motoneurons in newborn rats after axonal lesion (Sendtner et al., 1990), the question arose as to whether CNTF also has a survival effect on embryonic chick motoneurons at the developmental stage where physiological cell death occurs. To study this, it was essential to develop an isolation and culture procedure for the survival of chick E6 spinal motoneurons in which non-neuronal cells were eliminated and the motoneurons were highly enriched. In these cultures, virtually all of the initially plated motoneurons survived for at least 3 d in the presence of muscle extract, which was chosen as a positive control. Retrograde labeling of the motoneurons prior to their isolation showed that there is more than an 80% enrichment for motoneurons by the method used. The retrogradely labeled neurons also fulfilled the morphological criteria (diameter of neurons, appearance of processes) to identify motoneurons independent of retrograde labeling. Under these conditions, CNTF at a concentration of 1.5 ng/ml (EC50, 0.023 ng/ml) supported maximally 64% of the initially plated spinal motoneurons after 3 d and 53% after 6 d (the longest time period investigated). Other neurotrophic factors, such as NGF, brain-derived neurotrophic factor (BDNF), and neurotrophin-3, had no survival effect at all, even at concentrations up to 10 micrograms/ml for NGF and BDNF.(ABSTRACT TRUNCATED AT 250 WORDS)