Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Hippocampal representation in place learning

H Eichenbaum, C Stewart and RG Morris
Journal of Neuroscience 1 November 1990, 10 (11) 3531-3542; https://doi.org/10.1523/JNEUROSCI.10-11-03531.1990
H Eichenbaum
Department of Biological Sciences, Wellesley College, Massachusetts 02181.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Stewart
Department of Biological Sciences, Wellesley College, Massachusetts 02181.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RG Morris
Department of Biological Sciences, Wellesley College, Massachusetts 02181.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The generality of the place-learning impairment associated with hippocampal system damage was challenged using methods of training that permitted subjects to form an individual association between the place of escape and a particular navigational route in an open-field water maze. Both normal rats and rats with fornix lesions (FX rats) acquired this task rapidly, although FX rats were slightly slower in achieving minimum escape latencies. In postcriterion testing, FX rats occasionally made near misses but, more often, their escape performance was indistinguishable from that of intact rats. Results from a variety of probe tests indicated that FX rats, like normal rats, had based their performance on a representation of multiple distal cues but their representation, unlike that of normal rats, was inflexible in that it could not be used to guide performance when the cues or starting position were altered. These results parallel those from other studies of hippocampal function in animals and humans: The learning deficit consequent to hippocampal system damage (1) is not specific to a particular category of learning materials, but is dependent on the representational demands of the task; (2) is observed when task demands encourage a representation based on relations among multiple cues, but not when the task encourages adaptation to an individual (or compound) stimulus; (3) spares acquisition of fundamental procedures needed to perform the task; and (4) impairs the flexible use of learned information in tests other than repetition of the learning experience.

Back to top

In this issue

The Journal of Neuroscience: 10 (11)
Journal of Neuroscience
Vol. 10, Issue 11
1 Nov 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Hippocampal representation in place learning
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Hippocampal representation in place learning
H Eichenbaum, C Stewart, RG Morris
Journal of Neuroscience 1 November 1990, 10 (11) 3531-3542; DOI: 10.1523/JNEUROSCI.10-11-03531.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Hippocampal representation in place learning
H Eichenbaum, C Stewart, RG Morris
Journal of Neuroscience 1 November 1990, 10 (11) 3531-3542; DOI: 10.1523/JNEUROSCI.10-11-03531.1990
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.