Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains

WJ Schwartz and P Zimmerman
Journal of Neuroscience 1 November 1990, 10 (11) 3685-3694; https://doi.org/10.1523/JNEUROSCI.10-11-03685.1990
WJ Schwartz
Department of Neurology, University of Massachusetts Medical School, Worcester 01655.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Zimmerman
Department of Neurology, University of Massachusetts Medical School, Worcester 01655.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Circadian rhythms of locomotion (wheel-running activity) in 12 inbred mouse strains were recorded for interstrain differences in tau DD, the endogenous (free-running) period of the circadian pacemaker measured in constant environmental darkness. The results indicate that 1 or more genetic loci influence the value of tau DD, and a large (50 min) difference in mean tau DD between 2 of the strains, BALB/cByJ and C57BL/6J, allowed further characterization of the origins and inheritance of the polymorphic expression of this circadian pacemaker property. The interstrain difference in mean tau DD was associated with an interstrain difference in light-induced shifts of the phase of the free-running locomotor rhythm; the BALB/c strain (with the shorter mean tau DD) displayed relatively fewer advance phase shifts. Neither the history of previous light exposure, albinism, nor elevated circulating testosterone levels could account for the interstrain difference in mean tau DD. The value of tau DD based on the circadian rhythm of drinking activity (with the running wheel removed) was longer than that based on locomotion; this discrepancy was significantly greater and more variable in BALB/c than in C57BL/6 mice, though the interstrain difference in mean tau DD could not be attributed entirely to this effect. Reciprocal F1 hybrids of BALB/c x C57BL/6 matings revealed dominance of the C57BL/6 genotype, no sex linkage, and a significant (but small) maternal effect. Examination of CXB recombinant inbred strains provided no support for the hypothesis of monogenic inheritance. Further study of inherited differences in the BALB/c and C57BL/6 strains may be a useful noninvasive experimental approach for investigation of the neurobiological substrates of circadian rhythmicity.

Back to top

In this issue

The Journal of Neuroscience: 10 (11)
Journal of Neuroscience
Vol. 10, Issue 11
1 Nov 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains
WJ Schwartz, P Zimmerman
Journal of Neuroscience 1 November 1990, 10 (11) 3685-3694; DOI: 10.1523/JNEUROSCI.10-11-03685.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains
WJ Schwartz, P Zimmerman
Journal of Neuroscience 1 November 1990, 10 (11) 3685-3694; DOI: 10.1523/JNEUROSCI.10-11-03685.1990
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.