Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Cell interactions regulate dendritic morphology and responses to neurotransmitters in embryonic chick sympathetic preganglionic neurons in vitro

B Clendening and RI Hume
Journal of Neuroscience 1 December 1990, 10 (12) 3992-4005; DOI: https://doi.org/10.1523/JNEUROSCI.10-12-03992.1990
B Clendening
Department of Biology, University of Michigan, Ann Arbor 48109.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RI Hume
Department of Biology, University of Michigan, Ann Arbor 48109.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The influence of non-neuronal cells and interneurons on the morphological development of chick sympathetic preganglionic neurons (SPNs) and on the responsiveness of these neurons to the neurotransmitters GABA, glycine, and glutamate was studied. SPNs were retrogradely labeled with the fluorescent dyes dil and diO, then separated from spinal-cord non-neuronal cells and interneurons by fluorescence-activated cell sorting. SPNs were grown in culture, either alone or in coculture with non-neuronal cells alone, with interneurons alone, or with both of these cell types (control cultures). The responsiveness of SPNs to neurotransmitters was assessed by whole-cell recording, while cell morphology was assessed after intracellular staining with 6-carboxyfluorescein. Cell size and morphology were affected by non-neuronal cells. In the absence of non-neuronal cells, SPNs had smaller cell bodies and fewer major processes, whether or not interneurons were present. In contrast, responses to the 3 neurotransmitters were affected by both non-neuronal cells and interneurons, but in ways that differed slightly for each transmitter. In the absence of both non-neuronal cells and interneurons, responses to all 3 transmitters were much smaller than in control cultures, with responses to glutamate most profoundly affected. The addition of either non-neuronal cells or interneurons slightly increased the amplitude of SPN responses to glutamate, but the level of responsiveness with either cell type alone was much lower than for SPNs grown in the presence of both cell types. The addition of interneurons also slightly increased the responsiveness of SPNs to GABA, but non-neuronal cells alone had no significant effect on the responses of SPNs to GABA. Finally, the glycine responsiveness of SPNs was raised to control levels when either non-neuronal cells or interneurons were added. These experiments demonstrate that, though interneurons can have a significant inductive effect on the responses of SPNs to neurotransmitters, not all of the changes in neurotransmitter responsiveness can be related to the formation of functional synapses.

Back to top

In this issue

The Journal of Neuroscience: 10 (12)
Journal of Neuroscience
Vol. 10, Issue 12
1 Dec 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cell interactions regulate dendritic morphology and responses to neurotransmitters in embryonic chick sympathetic preganglionic neurons in vitro
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Cell interactions regulate dendritic morphology and responses to neurotransmitters in embryonic chick sympathetic preganglionic neurons in vitro
B Clendening, RI Hume
Journal of Neuroscience 1 December 1990, 10 (12) 3992-4005; DOI: 10.1523/JNEUROSCI.10-12-03992.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Cell interactions regulate dendritic morphology and responses to neurotransmitters in embryonic chick sympathetic preganglionic neurons in vitro
B Clendening, RI Hume
Journal of Neuroscience 1 December 1990, 10 (12) 3992-4005; DOI: 10.1523/JNEUROSCI.10-12-03992.1990
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.