Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations

JS Taube, RU Muller and JB Ranck Jr
Journal of Neuroscience 1 February 1990, 10 (2) 436-447; DOI: https://doi.org/10.1523/JNEUROSCI.10-02-00436.1990
JS Taube
Department of Physiology, SUNY Health Sciences Center, Brooklyn 11203.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RU Muller
Department of Physiology, SUNY Health Sciences Center, Brooklyn 11203.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JB Ranck Jr
Department of Physiology, SUNY Health Sciences Center, Brooklyn 11203.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The discharge characteristics of postsubicular head-direction cells in a fixed environment were described in the previous paper (Taube et al., 1990). This paper reports changes in the firing properties of head- direction cells following changes in the animal's environment. Head- direction cells were recorded from rats as they moved freely in a 76-cm- diameter gray cylinder. A white card, occupying 100 degrees of arc, was taped to the inside wall of the cylinder and served as the major orienting spatial cue in the animal's environment. Rotation of the cue card produced near-equal rotation in the preferred firing direction of head-direction cells, with minimal changes in peak firing rate, directional firing range, or asymmetry of the firing-rate/head- direction function. Card removal had no effect on peak firing rate or range of firing, but in 8/13 cells the preferred direction rotated by at least 24 degrees. Similarly, changing the shape of the environment to a rectangular or square enclosure caused the preferred firing direction to rotate by at least 48 degrees for 8/10 cells in the rectangle and 3/8 cells in the square, with minimal changes in the peak firing rate or directional firing range. Hand holding the animals and moving them around the cylinder had no effect on the preferred direction or firing range of the cell, but decreased the maximal firing rate in 7/9 cells. On 2 occasions, 2 head-direction cells were recorded simultaneously. The rotation of the preferred firing direction for one cell was the same as the rotation of the preferred direction for the second cell after each environmental manipulation. These results demonstrate that specific visual cues in the environment can exert control over the preferred firing direction and indicate that head- direction cell firing is not a simple sensory response to visual cues, but rather represents more abstract information concerning the animal's spatial relationship with its environment. The constancy of the angle between the preferred firing directions of pairs of simultaneously recorded head-direction cells suggests that there is a fixed mapping of the population onto direction within the environment. Thus, environmental manipulations appear to cause only a change in the reference direction, but leave all other discharge characteristics of directional cells unchanged. In the discussion, comparisons are drawn between the responses of head-direction cells and hippocampal place cells to similar environmental manipulations (Muller and Kubie, 1987), and ways in which these 2 spatial systems interact in navigation are discussed.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 10 (2)
Journal of Neuroscience
Vol. 10, Issue 2
1 Feb 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations
JS Taube, RU Muller, JB Ranck Jr
Journal of Neuroscience 1 February 1990, 10 (2) 436-447; DOI: 10.1523/JNEUROSCI.10-02-00436.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations
JS Taube, RU Muller, JB Ranck Jr
Journal of Neuroscience 1 February 1990, 10 (2) 436-447; DOI: 10.1523/JNEUROSCI.10-02-00436.1990
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.