Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Changes in the distribution of GAP-43 during the development of neuronal polarity

K Goslin, DJ Schreyer, JH Skene and G Banker
Journal of Neuroscience 1 February 1990, 10 (2) 588-602; https://doi.org/10.1523/JNEUROSCI.10-02-00588.1990
K Goslin
Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DJ Schreyer
Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JH Skene
Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Banker
Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

GAP-43, a neuron specific growth-associated protein, is selectively distributed to the axonal domain in developing neurons; it is absent from dendrites and their growth cones. Using immunofluorescence microscopy, we have further examined the distribution of GAP-43 during the development of hippocampal neurons in culture, in order to determine when this polarized distribution arises. Cultured hippocampal neurons initially extend several short processes which have the potential to become either axons or dendrites. At this stage, before the morphological expression of polarity, GAP-43 is concentrated in the growth cones of these processes but is distributed more or less equally among them. Polarity becomes established when one of these processes elongates to become the axon. At the earliest stage when the emerging axon can be identified, GAP-43 is preferentially concentrated in its growth cone. During the next few days, as the remaining processes take on dendritic properties, they lose their residual GAP-43 immunoreactivity. Throughout development, GAP-43 remains highly concentrated in the axonal growth cone, but the concentration of GAP-43 in the axon shaft increases, beginning near the growth cone and progressing proximally until GAP-43 is uniformly distributed along the entire axon. At all stages of development, GAP-43 is also concentrated in the region of the Golgi apparatus. These results suggest that the selective sorting of at least one membrane protein into the axon coincides with the morphological expression of polarity. These results also raise the possibility that GAP-43 may play an important role in the early phases of axonal outgrowth, by which the functional polarity of neurons is established.

Back to top

In this issue

The Journal of Neuroscience: 10 (2)
Journal of Neuroscience
Vol. 10, Issue 2
1 Feb 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Changes in the distribution of GAP-43 during the development of neuronal polarity
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Changes in the distribution of GAP-43 during the development of neuronal polarity
K Goslin, DJ Schreyer, JH Skene, G Banker
Journal of Neuroscience 1 February 1990, 10 (2) 588-602; DOI: 10.1523/JNEUROSCI.10-02-00588.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Changes in the distribution of GAP-43 during the development of neuronal polarity
K Goslin, DJ Schreyer, JH Skene, G Banker
Journal of Neuroscience 1 February 1990, 10 (2) 588-602; DOI: 10.1523/JNEUROSCI.10-02-00588.1990
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.