Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

A vasoactive intestinal peptide-like cotransmitter at cholinergic synapses between rat myenteric neurons in cell culture

AL Willard
Journal of Neuroscience 1 March 1990, 10 (3) 1025-1034; DOI: https://doi.org/10.1523/JNEUROSCI.10-03-01025.1990
AL Willard
Department of Physiology, University of North Carolina, Chapel Hill 27599.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Intracellular recording and immunochemical techniques were used to study synaptic transmission between individual pairs of rat myenteric plexus neurons in cell culture. This report describes the synaptic connections made by “dual function” presynaptic neurons that evoked slow postsynaptic depolarizations (slow EPSPs) in the same neurons in which they also evoked fast nicotinic cholinergic EPSPs. The slow EPSPs occurred only when presynaptic neurons were stimulated at frequencies of 5 Hz or higher. During the slow EPSPs, slope input resistance increased. The slow EPSPs were not detectably voltage-dependent, and they reversed sign at the estimated K+ equilibrium potential, suggesting that they resulted from a synaptically mediated decrease in resting K+ conductance. Several lines of evidence suggested that dual- function neurons evoke slow EPSPs by releasing a vasoactive intestinal peptide (VIP)-like cotransmitter. (1) Immunocytochemical staining revealed VIP-like immunoreactivity in all physiologically identified dual-function neurons. (2) Responses to exogenously applied VIP mimicked the slow EPSPs. (3) Superfusion of cultures with anti-VIP antisera blocked the slow EPSPs reversibly, as did application of desensitizing doses of VIP. These findings suggest that during periods of increased activity, subsets of cholinergic myenteric neurons release a VIP-like cotransmitter that enhances postsynaptic excitability. The effects of the cotransmitter may help to compensate for decreases in nicotinic EPSPs that occur during increased presynaptic activity.

Back to top

In this issue

The Journal of Neuroscience: 10 (3)
Journal of Neuroscience
Vol. 10, Issue 3
1 Mar 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A vasoactive intestinal peptide-like cotransmitter at cholinergic synapses between rat myenteric neurons in cell culture
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A vasoactive intestinal peptide-like cotransmitter at cholinergic synapses between rat myenteric neurons in cell culture
AL Willard
Journal of Neuroscience 1 March 1990, 10 (3) 1025-1034; DOI: 10.1523/JNEUROSCI.10-03-01025.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A vasoactive intestinal peptide-like cotransmitter at cholinergic synapses between rat myenteric neurons in cell culture
AL Willard
Journal of Neuroscience 1 March 1990, 10 (3) 1025-1034; DOI: 10.1523/JNEUROSCI.10-03-01025.1990
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.