Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage

DE Pellegrini-Giampietro, G Cherici, M Alesiani, V Carla and F Moroni
Journal of Neuroscience 1 March 1990, 10 (3) 1035-1041; DOI: https://doi.org/10.1523/JNEUROSCI.10-03-01035.1990
DE Pellegrini-Giampietro
Dipartimento di Farmacologia Preclinica e Clinica, Mario Aiazzi Mancini, Universita di Firenze, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Cherici
Dipartimento di Farmacologia Preclinica e Clinica, Mario Aiazzi Mancini, Universita di Firenze, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Alesiani
Dipartimento di Farmacologia Preclinica e Clinica, Mario Aiazzi Mancini, Universita di Firenze, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V Carla
Dipartimento di Farmacologia Preclinica e Clinica, Mario Aiazzi Mancini, Universita di Firenze, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F Moroni
Dipartimento di Farmacologia Preclinica e Clinica, Mario Aiazzi Mancini, Universita di Firenze, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Excessive stimulation of excitatory amino acid (EAA) receptors and abnormal production of oxygen-derived free radicals have repeatedly been implicated in the series of events linking brain hypoxia or ischemia to neuronal death. We report here that in rat hippocampal slices the KCl-stimulated output of labeled D-3H aspartate or of endogenous aspartate and glutamate significantly increased under in vitro simulated hypoxic, hypoglycemic, or ischemic conditions. In particular, when the slices were incubated for 10 min at 32 degrees C under “ischemic” conditions (namely, lack of oxygen and glucose), endogenous aspartate and glutamate in the supernatant increased by 10 and 20 times, respectively. Since radical scavengers (D-mannitol), drugs reducing free radical formation (indomethacin, corticosteroid), or enzymes able to metabolize them (catalase and superoxide dismutase) significantly reduced this output, it was supposed that free radicals caused EAA release. A direct demonstration of this concept was obtained by showing a significant release of EAA after incubation of hippocampal slices with enzymes and substrates known to cause the formation of free radicals, such as xanthine plus xanthine oxidase or arachidonic acid plus prostaglandin synthase. Neither ischemia nor the enzymatic reactions leading to free radical production increased the activity of the cytoplasmic enzyme lactate dehydrogenase in the incubation medium, thus ruling out a nonspecific cellular lysis. It appears therefore that during ischemic states, brain production of reactive molecules (free radicals) causes an increased output of EAA. This may trigger a series of events which could help to explain the delayed loss of neurons after a transient ischemic period.

Back to top

In this issue

The Journal of Neuroscience: 10 (3)
Journal of Neuroscience
Vol. 10, Issue 3
1 Mar 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage
DE Pellegrini-Giampietro, G Cherici, M Alesiani, V Carla, F Moroni
Journal of Neuroscience 1 March 1990, 10 (3) 1035-1041; DOI: 10.1523/JNEUROSCI.10-03-01035.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage
DE Pellegrini-Giampietro, G Cherici, M Alesiani, V Carla, F Moroni
Journal of Neuroscience 1 March 1990, 10 (3) 1035-1041; DOI: 10.1523/JNEUROSCI.10-03-01035.1990
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.