Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Expression of long-term adaptation of synaptic transmission requires a critical period of protein synthesis

PV Nguyen and HL Atwood
Journal of Neuroscience 1 April 1990, 10 (4) 1099-1109; DOI: https://doi.org/10.1523/JNEUROSCI.10-04-01099.1990
PV Nguyen
Department of Physiology, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HL Atwood
Department of Physiology, University of Toronto, Ontario, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The crayfish claw closer muscle is innervated by 2 distinct excitatory motoneurons, one tonic and the other phasic. The phasic motoneuron is relatively inactive and generates large EPSPs that normally depress rapidly with repetitive stimulation at moderate frequencies. Stimulation of the phasic motoneuron in vivo for 3 d at 5 Hz (2 hr/d) produced a marked adaptive shift in the neuromuscular synaptic response properties of the motoneuron: average initial EPSPs and depression of EPSPs were significantly reduced. We tested the hypothesis that neuronal protein synthesis is required for full expression of long-term adaptation (LTA). A reversible inhibitor of neuronal protein synthesis, cycloheximide (CHX), was injected into intact crayfish at various times prior to, during, or after each stimulation period. At a dosage of 5 micrograms/gm body weight, CHX inhibited the incorporation of [35S]- methionine into abdominal nerve cord protein for approximately 2 hr after administration (greater than 80% inhibition). Full expression of LTA was selectively blocked when CHX was administered 6 hr or 2 hr prior to each stimulation period. Both the reduction in initial EPSP amplitude and the resistance to synaptic depression were significantly attenuated. CHX administered at the onset of or at the end of each stimulation period did not affect the expression of LTA. Control experiments using unstimulated animals showed that neither chronic nor acute administration of CHX adversely affected the phasic axon's synaptic response properties. Our results suggest that full expression of neuronal LTA requires the presence of a pool of preexisting, short- lived (or rapidly utilized) protein(s). Depletion of such a pool prior to each stimulation period appears to interfere with subsequent induction of LTA.

Back to top

In this issue

The Journal of Neuroscience: 10 (4)
Journal of Neuroscience
Vol. 10, Issue 4
1 Apr 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Expression of long-term adaptation of synaptic transmission requires a critical period of protein synthesis
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Expression of long-term adaptation of synaptic transmission requires a critical period of protein synthesis
PV Nguyen, HL Atwood
Journal of Neuroscience 1 April 1990, 10 (4) 1099-1109; DOI: 10.1523/JNEUROSCI.10-04-01099.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Expression of long-term adaptation of synaptic transmission requires a critical period of protein synthesis
PV Nguyen, HL Atwood
Journal of Neuroscience 1 April 1990, 10 (4) 1099-1109; DOI: 10.1523/JNEUROSCI.10-04-01099.1990
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.