Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Spatial firing properties of hippocampal theta cells

JL Kubie, RU Muller and E Bostock
Journal of Neuroscience 1 April 1990, 10 (4) 1110-1123; DOI: https://doi.org/10.1523/JNEUROSCI.10-04-01110.1990
JL Kubie
Department of Anatomy, SUNY Health Sciences Center, Brooklyn 11203.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RU Muller
Department of Anatomy, SUNY Health Sciences Center, Brooklyn 11203.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Bostock
Department of Anatomy, SUNY Health Sciences Center, Brooklyn 11203.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previous studies have shown that complex-spike cells, the most common cell type recorded in the hippocampus of freely moving rats, have the property of spatial firing--that is, a cell will fire rapidly only when the animal is in a particular part of its environment (O'Keefe and Dostrovsky, 1971). In the current study, we analyze the spatial firing of theta cells, the second major class of cells in the hippocampus, which are thought to correspond to nonpyramidal neurons (Fox and Ranck, 1975, 1981). Our purposes were to extend findings from earlier spatial analyses (McNaughton et al., 1983; Christian and Deadwyler, 1986), and to determine whether the spatial firing is cell specific and independent of behavior. Theta cells were recorded from rats in a cylindrical enclosure using techniques previously used for the analysis of spatial firing in complex-spike cells (Muller et al., 1987). The spatial firing patterns of individual neurons appeared as a complex surface with several regions of high and low firing. The ratio of firing from high- to low-rate regions averaged 2.5. These spatial firing patterns were smooth and reproducible, but less so than for complex-spike cells. When a cue card on the wall was moved, theta cell firing patterns remained in register with the cue. Two analyses were performed to determine whether spatial firing patterns were secondary to spatial distributions of behavior. When only locomotor data segments were selected, spatial variations were more clear-cut. In an attempt to test whether theta cells had cell-specific patterns of firing, pairs of theta cells were recorded simultaneously. On all occasions, the firing distribution for each of the cells in a pair was clearly distinctive. These findings support the conclusions that theta cell activity contains a spatial signal that is cell specific and not secondary to other firing correlates.

Back to top

In this issue

The Journal of Neuroscience: 10 (4)
Journal of Neuroscience
Vol. 10, Issue 4
1 Apr 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Spatial firing properties of hippocampal theta cells
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Spatial firing properties of hippocampal theta cells
JL Kubie, RU Muller, E Bostock
Journal of Neuroscience 1 April 1990, 10 (4) 1110-1123; DOI: 10.1523/JNEUROSCI.10-04-01110.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Spatial firing properties of hippocampal theta cells
JL Kubie, RU Muller, E Bostock
Journal of Neuroscience 1 April 1990, 10 (4) 1110-1123; DOI: 10.1523/JNEUROSCI.10-04-01110.1990
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.