Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Emergence and refinement of clustered horizontal connections in cat striate cortex

EM Callaway and LC Katz
Journal of Neuroscience 1 April 1990, 10 (4) 1134-1153; DOI: https://doi.org/10.1523/JNEUROSCI.10-04-01134.1990
EM Callaway
Laboratory of Neurobiology, Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LC Katz
Laboratory of Neurobiology, Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Pyramidal cells in layer 2/3 of adult cat striate cortex have long, intrinsic horizontal axon collaterals within both layer 2/3 and layer 5. These collaterals form periodic “clusters” of finer axon branches that link columns of similar orientation selectivity. We have investigated the sequence of events and possible mechanisms underlying the development of these clustered intrinsic horizontal connections using a combination of neuronal tracers and intracellular staining. Small injections of fluorescent latex microspheres made during the first postnatal week (at P4–6), when examined in tangential sections, produced an even, unclustered distribution of retrogradely labeled cells up to 2 mm from the injection site. At P8, retrograde labeling extended over a larger area and clustering was discernible, primarily among the most distant labeled cells. At both P6 and P8, labeling was similar in layers 2/3 and 5, indicating that the transition from clustered to unclustered connections occurred simultaneously for cells in superficial and deep laminae. By the end of the second postnatal week (P12–15), retrogradely labeled cells were far more clustered both within and beyond the extent of P6 label; the density of labeled cells was high throughout the labeled region, but much higher within clusters. The periodicity of these nascent clusters was similar to that in the adult. Despite obvious clustering, the pattern of retrograde label observed following injections at 2–3 weeks (P12–21) differed markedly from the adult, in that the regions between clusters contained many labeled cells. Over the next 3 weeks, the connections were refined, so that by the sixth postnatal week (P36–38), regions between clusters contained very few retrogradely labeled cells and the overall pattern of retrograde label was indistinguishable from that in adults. Despite differences in postmigratory ages of neurons from the superficial and deep laminae, clustering of retrogradely labeled cells from these 2 populations was similar at all ages. Experiments in which 2–3 weeks elapsed between the time microsphere injections were made and animals were killed demonstrated that neither the initial formation of crude clusters nor their refinement was due to cell death. Instead, cluster refinement resulted from specific process elimination. When a red microsphere injection at P15 was followed by a green microsphere injection at exactly the same location on P29, the earlier injection resulted in crude clustering, as expected. Virtually all of the cells double-labeled by the later injection were within the densest clusters of label from the early injection.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 10 (4)
Journal of Neuroscience
Vol. 10, Issue 4
1 Apr 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Emergence and refinement of clustered horizontal connections in cat striate cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Emergence and refinement of clustered horizontal connections in cat striate cortex
EM Callaway, LC Katz
Journal of Neuroscience 1 April 1990, 10 (4) 1134-1153; DOI: 10.1523/JNEUROSCI.10-04-01134.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Emergence and refinement of clustered horizontal connections in cat striate cortex
EM Callaway, LC Katz
Journal of Neuroscience 1 April 1990, 10 (4) 1134-1153; DOI: 10.1523/JNEUROSCI.10-04-01134.1990
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.