Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe

B Bratton and J Bastian
Journal of Neuroscience 1 April 1990, 10 (4) 1241-1253; DOI: https://doi.org/10.1523/JNEUROSCI.10-04-01241.1990
B Bratton
Department of Zoology, University of Oklahoma, Norman 73019.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Bastian
Department of Zoology, University of Oklahoma, Norman 73019.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The nucleus praeeminentialis projects to the electrosensory lateral line lobe via 2 distinct pathways. Neurons that project to the posterior eminentia granularis and therefore influence the electrosensory lateral line lobe indirectly are described in the preceding report. This report describes the physiological properties and anatomical characteristics, revealed with Lucifer yellow staining, of n. praeeminentialis neurons that project directly to the ventral molecular layer of the electrosensory lateral line lobe. The neurons studied were the stellate cells described by Sas and Maler (1983), and we found 2 physiological subtypes of these. These neurons typically had no spontaneous activity, but responded vigorously to either increased electric organ discharge amplitude on the contralateral side of the body (ST-E cells) or to decreased amplitude (ST-I cells). These neurons also responded to low-frequency sinusoidal electric organ discharge amplitude modulations (AM) but were inhibited by AMs having frequencies greater than about 16 Hz. These stellate neurons were unable to encode information about long-term changes in electric organ discharge amplitude, but they responded very well to moving electrolocation targets. The relatively long response latency of these neurons suggests that they receive inputs from higher centers in addition to those from the electrosensory lateral line lobe. It is suggested that these cells alter the sensitivity of restricted populations of output cells in the electrosensory lateral line lobe and process temporally and spatially restricted stimuli. They may act to increase the intensity of the neural representation of important stimuli.

Back to top

In this issue

The Journal of Neuroscience: 10 (4)
Journal of Neuroscience
Vol. 10, Issue 4
1 Apr 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe
B Bratton, J Bastian
Journal of Neuroscience 1 April 1990, 10 (4) 1241-1253; DOI: 10.1523/JNEUROSCI.10-04-01241.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe
B Bratton, J Bastian
Journal of Neuroscience 1 April 1990, 10 (4) 1241-1253; DOI: 10.1523/JNEUROSCI.10-04-01241.1990
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.