Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Brain pathways for learned and unlearned vocalizations differ in zebra finches

HB Simpson and DS Vicario
Journal of Neuroscience 1 May 1990, 10 (5) 1541-1556; DOI: https://doi.org/10.1523/JNEUROSCI.10-05-01541.1990
HB Simpson
Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DS Vicario
Rockefeller University, New York, New York 10021.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Male zebra finches sing, females do not. However, both sexes produce the “long call”when placed in visual isolation. This call is sexually dimorphic; it includes learned components in males but not in females. The 3 learned features of the male long call are a high fundamental frequency, a fast frequency modulation, and a short, stable duration. These features are learned by the male during development, as is song. Since similar features are also found in song syllables, we wanted to know whether long-call production depends on the same CNS pathway that controls song production. Three critical components of the song pathway are telencephalic nuclei HVC, RA, and the tracheosyringeal (ts) nerves innervating the syrinx. In male zebra finches, bilateral section of the ts nerves affected the fundamental frequency and fast frequency modulations of both the long call and song but left the temporal features intact. Ts nerve section had no effect on the female long call. Bilateral lesions of either HVC or RA in males affected the fundamental frequency, fast frequency modulations, and temporal structure of both the long call and song. Similar lesions had no effect on the female long call. These results demonstrate that HVC, RA, and the ts nerves make critical contributions to the acoustic features of the male long call and song, while the temporal pattern depends on HVC and RA but not the ts nerves. HVC and RA lesions remove all the learned features that distinguish the male call and reveal a simple unlearned vocalization shared by both sexes. We suggest that the learned features of oscine songbird vocalizations are controlled by a telencephalic pathway that acts in concert with other pathways responsible for simpler, unlearned vocalizations.

Back to top

In this issue

The Journal of Neuroscience: 10 (5)
Journal of Neuroscience
Vol. 10, Issue 5
1 May 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Brain pathways for learned and unlearned vocalizations differ in zebra finches
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Brain pathways for learned and unlearned vocalizations differ in zebra finches
HB Simpson, DS Vicario
Journal of Neuroscience 1 May 1990, 10 (5) 1541-1556; DOI: 10.1523/JNEUROSCI.10-05-01541.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Brain pathways for learned and unlearned vocalizations differ in zebra finches
HB Simpson, DS Vicario
Journal of Neuroscience 1 May 1990, 10 (5) 1541-1556; DOI: 10.1523/JNEUROSCI.10-05-01541.1990
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.