Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Efferent vestibular system in the toadfish: action upon horizontal semicircular canal afferents

R Boyle and SM Highstein
Journal of Neuroscience 1 May 1990, 10 (5) 1570-1582; DOI: https://doi.org/10.1523/JNEUROSCI.10-05-01570.1990
R Boyle
Department of Otolaryngology, Oregon Health Sciences University, Portland 97201.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SM Highstein
Department of Otolaryngology, Oregon Health Sciences University, Portland 97201.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The influence of the efferent vestibular system (EVS) upon the background discharge and response dynamics of horizontal semicircular canal afferents was examined in the toadfish. In one set of experiments the EVS was activated using a behavioral paradigm; in the second, electrical shocks were applied to the efferent vestibular nucleus in the brain stem. The afferent's background discharge and responses to rotation were recorded before and during efferent stimulation. Both EVS activation paradigms gave qualitatively similar results: a facilitation of the afferent's rate, while the animal was at rest or in motion, and a reduction in response sensitivity. Afferents were not affected uniformly: low-gain, velocity-sensitive afferents were weakly influenced, while high-gain and acceleration afferents having low rates were the most excited. The afferents' phase of response was unmodified by electrical EVS stimulation. In many afferents a prominent form of response nonlinearity is discharge silencing over large portions of the stimulus cycle. Efferent-evoked rate increase was often sufficient to produce a full-cycle bidirectional response. Caloric facilitation of afferent rate confirmed that the EVS-induced sensitivity decrease was rate independent. These results show a dual action of the efferent system: (1) facilitating the afferent's rate and (2) reducing its sensitivity to adequate stimulation that may be correlated with the dual EVS synaptic innervation of the labyrinth, namely postsynaptic efferent-afferent synapses and presynaptic efferent-hair cell synapses.

Back to top

In this issue

The Journal of Neuroscience: 10 (5)
Journal of Neuroscience
Vol. 10, Issue 5
1 May 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Efferent vestibular system in the toadfish: action upon horizontal semicircular canal afferents
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Efferent vestibular system in the toadfish: action upon horizontal semicircular canal afferents
R Boyle, SM Highstein
Journal of Neuroscience 1 May 1990, 10 (5) 1570-1582; DOI: 10.1523/JNEUROSCI.10-05-01570.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Efferent vestibular system in the toadfish: action upon horizontal semicircular canal afferents
R Boyle, SM Highstein
Journal of Neuroscience 1 May 1990, 10 (5) 1570-1582; DOI: 10.1523/JNEUROSCI.10-05-01570.1990
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.