Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The dependence of motoneurons on their target muscle during postnatal development of the mouse

LL Crews and DJ Wigston
Journal of Neuroscience 1 May 1990, 10 (5) 1643-1653; DOI: https://doi.org/10.1523/JNEUROSCI.10-05-01643.1990
LL Crews
Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DJ Wigston
Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Motoneurons seem to require contact with their target muscle even after embryogenesis is complete, but the consequences of target-deprivation during postnatal development are poorly understood. To examine the fate of motoneurons separated from their targets postnatally, we labeled the motoneurons that innervate the biceps brachii muscle with the retrograde tracer Fluorogold and then separated them from their muscle by amputating the forelimb. Fluorogold was subsequently found within motoneurons, as well as within much smaller cells that were identified as microglia. The number of labeled microglial cells steadily increased with time following limb amputation, while the number of labeled motoneurons declined. The magnitude of this response depended on the age of the animal: the younger the animal at the time of the amputation, the greater the number of labeled microglia and the more extensive the neuronal loss. To ensure that the response to amputation was caused by target deprivation, rather than by the injury itself, the nerve to the biceps muscle was cut or crushed. In this way, axons were transected but target access was only temporarily denied. After the nerve was cut, motoneurons began to reinnervate the muscle within 3 weeks but, just as after amputation, the spinal cord subsequently contained labeled microglia and a reduced number of motoneurons. In contrast, after nerve crush, reinnervation began within 4 d and there was no evidence of motoneuron death. Our results demonstrate that target-deprivation causes motoneurons to be lost in an age- and time- dependent manner, and indicate a critical period after axotomy during which motoneurons must reinnervate their target in order to survive. Further, we provide evidence that microglial cells may phagocytose dying motoneurons. The approach we used would provide a convenient assay for testing candidate motoneuron growth factors in animals where in vivo studies of the embryo are difficult.

Back to top

In this issue

The Journal of Neuroscience: 10 (5)
Journal of Neuroscience
Vol. 10, Issue 5
1 May 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The dependence of motoneurons on their target muscle during postnatal development of the mouse
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The dependence of motoneurons on their target muscle during postnatal development of the mouse
LL Crews, DJ Wigston
Journal of Neuroscience 1 May 1990, 10 (5) 1643-1653; DOI: 10.1523/JNEUROSCI.10-05-01643.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The dependence of motoneurons on their target muscle during postnatal development of the mouse
LL Crews, DJ Wigston
Journal of Neuroscience 1 May 1990, 10 (5) 1643-1653; DOI: 10.1523/JNEUROSCI.10-05-01643.1990
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.