Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Delayed, frequency-specific inhibition in the cochlear nuclei of mice: a mechanism for monaural echo suppression

RE Wickesberg and D Oertel
Journal of Neuroscience 1 June 1990, 10 (6) 1762-1768; DOI: https://doi.org/10.1523/JNEUROSCI.10-06-01762.1990
RE Wickesberg
Department of Neurophysiology, University of Wisconsin-Madison 53706.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Oertel
Department of Neurophysiology, University of Wisconsin-Madison 53706.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

To understand how auditory information is processed in the cochlear nuclei, it is crucial to know what circuitry exists and how it functions. Previous anatomical experiments have shown that neurons in the deep layer of the dorsal cochlear nucleus (DCN) project topographically to the anteroventral cochlear nucleus (AVCN) (Wickesberg and Oertel, 1988). Because interneurons in the DCN and their targets in AVCN are excited by the same group of auditory nerve fibers, the projection is frequency-specific. Here we report that microinjections of glutamate in the DCN evoke trains of IPSPs in individual, impaled AVCN neurons in brain slices of the cochlear nuclear complex. Only injections along a rostrocaudal band in the DCN, matching the anatomical projection of tuberculoventral neurons, evoke IPSPs; elsewhere, there were no responses to the glutamate. The inhibition is blocked by 0.5 microM strychnine. Both bushy and stellate cells are targets of the inhibitory projection. Inhibition in the AVCN is delayed by an additional synaptic delay with respect to the excitation. Delayed, frequency-specific inhibition allows the first wavefront to be transmitted to higher auditory centers by bushy and stellate cells, while following inputs encoding signals of similar frequencies are attenuated at least for the duration of an IPSP. These findings are consistent with results from psychoacoustic experiments and suggest that this circuit provides a source of monaural echo suppression.

Back to top

In this issue

The Journal of Neuroscience: 10 (6)
Journal of Neuroscience
Vol. 10, Issue 6
1 Jun 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Delayed, frequency-specific inhibition in the cochlear nuclei of mice: a mechanism for monaural echo suppression
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Delayed, frequency-specific inhibition in the cochlear nuclei of mice: a mechanism for monaural echo suppression
RE Wickesberg, D Oertel
Journal of Neuroscience 1 June 1990, 10 (6) 1762-1768; DOI: 10.1523/JNEUROSCI.10-06-01762.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Delayed, frequency-specific inhibition in the cochlear nuclei of mice: a mechanism for monaural echo suppression
RE Wickesberg, D Oertel
Journal of Neuroscience 1 June 1990, 10 (6) 1762-1768; DOI: 10.1523/JNEUROSCI.10-06-01762.1990
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.