Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation

PA Pawson and AD Grinnell
Journal of Neuroscience 1 June 1990, 10 (6) 1769-1778; DOI: https://doi.org/10.1523/JNEUROSCI.10-06-01769.1990
PA Pawson
Jerry Lewis Neuromuscular Research Center, UCLA School of Medicine 90024.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AD Grinnell
Jerry Lewis Neuromuscular Research Center, UCLA School of Medicine 90024.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This paper describes the extent of release and terminal variability among normal frog sartorius neuromuscular junctions and seeks physiological correlates for these differences. Terminal length varied over approximately a 10-fold range, quantal content and release per unit terminal length (“release efficacy”) over much larger ranges. For purposes of comparison of different junctions, release efficacy in a Ringer's containing 0.25 mM Ca2+ was determined in all cases. In a Ringer's containing 0.1 mM Ca2+, tetanic stimulation causes a buildup of evoked release and of miniature endplate potential (mEPP) frequency. The mEPP frequency at the end of the tetanus is proportional to the evoked release level. Following the tetanus, the mEPP frequency declines in a multiexponential fashion, with the 2 longest decay phases, representing augmentation and posttetanic potentiation (PTP), both having time constants that are positively linearly correlated with the synaptic release efficacy. Longer or higher-frequency tetanic stimulation resulted in a longer time course of decay of mEPP frequency. In a Ca2(+)-free/EGTA Ringer's, tetanic stimulation causes no evoked release, but does lead to an increased mEPP frequency, presumably due to a buildup of free Ca2+ displaced from internal stores by the Na+ influx. Following the tetanus, the mEPP frequency declines to resting level with a time constant that is essentially the same for all junctions, regardless of their release efficacy in Ca2(+)- containing Ringer's. These findings indicate that stronger terminals have a greater influx of Ca2+ per unit length during action potential invasion, but that in the absence of external Ca2+, tetanic stimulation results in comparable release of Ca2+ from internal stores in all terminals and comparable accumulation of Ca2+ in some large compartment, the subsequent emptying of which determines the time course of PTP.

Back to top

In this issue

The Journal of Neuroscience: 10 (6)
Journal of Neuroscience
Vol. 10, Issue 6
1 Jun 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation
PA Pawson, AD Grinnell
Journal of Neuroscience 1 June 1990, 10 (6) 1769-1778; DOI: 10.1523/JNEUROSCI.10-06-01769.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation
PA Pawson, AD Grinnell
Journal of Neuroscience 1 June 1990, 10 (6) 1769-1778; DOI: 10.1523/JNEUROSCI.10-06-01769.1990
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.