Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the trembler as an in vivo model for Schwann cell-axon interactions

S de Waegh and ST Brady
Journal of Neuroscience 1 June 1990, 10 (6) 1855-1865; DOI: https://doi.org/10.1523/JNEUROSCI.10-06-01855.1990
S de Waegh
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75235.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
ST Brady
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas 75235.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The thickness of the myelin sheath in normal myelinated nerve is proportional to the diameter of the axon. In the demyelinating mutant mouse, Trembler, not only is the thickness of the myelin sheath reduced, but the caliber of associated axons is smaller. This correlation suggests that the interaction between axons and Schwann cells may affect the shape and function of axons as well as properties of myelin. Since axonal diameter depends in part on the cytoskeleton and its movement with slow axonal transport, we have compared the properties of slow transport in the sciatic nerve of control and Trembler mice. Studies of the sciatic nerve of normal mice showed that the rates for proteins moving in slow component a (SCa) and slow component b (SCb) are similar to those previously measured in rat. In Trembler mice, tubulin was transported significantly faster than in control mice, with a rate of 1.73 mm/d for Trembler compared to 1.56 mm/d in the control. In contrast, the rate for neurofilament proteins was significantly slower in the Trembler (1.15 mm/d compared to 1.38 mm/d in the control). The majority of proteins in SCb were also transported slower in Trembler than control: actin and calmodulin were transported at 2.29 mm/d as compared to 2.73 mm/d in control, while spectrin and clathrin were transported at 2.01 and 2.43 mm/d, respectively, as compared to 2.54 mm/d in control. The importance of slow axonal transport in regeneration has been suggested by the clear correlation between the rates of regeneration and the rates of SCb. Therefore, we evaluated regeneration of motor axons in Trembler mice to determine whether the regenerative response was affected by deficient Schwann cells. A slower regeneration rate was found in the Trembler (1.7 mm/d) motor axon when compared to the control (2.29 mm/d), but elongation of fibers in regeneration began after a shorter delay in the Trembler (1.6 d) than in control (2.5 d). Thus, deficient Schwann cells and poor myelination appear to affect both quantitative and qualitative properties of slow axonal transport. These changes lead to alterations in the morphological and physiological properties of affected axons.

Back to top

In this issue

The Journal of Neuroscience: 10 (6)
Journal of Neuroscience
Vol. 10, Issue 6
1 Jun 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the trembler as an in vivo model for Schwann cell-axon interactions
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the trembler as an in vivo model for Schwann cell-axon interactions
S de Waegh, ST Brady
Journal of Neuroscience 1 June 1990, 10 (6) 1855-1865; DOI: 10.1523/JNEUROSCI.10-06-01855.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the trembler as an in vivo model for Schwann cell-axon interactions
S de Waegh, ST Brady
Journal of Neuroscience 1 June 1990, 10 (6) 1855-1865; DOI: 10.1523/JNEUROSCI.10-06-01855.1990
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.