Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Activation kinetics of retinal cones and rods: response to intense flashes of light

S Hestrin and JI Korenbrot
Journal of Neuroscience 1 June 1990, 10 (6) 1967-1973; DOI: https://doi.org/10.1523/JNEUROSCI.10-06-01967.1990
S Hestrin
Department of Physiology, School of Medicine, University of California, San Francisco 94143.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JI Korenbrot
Department of Physiology, School of Medicine, University of California, San Francisco 94143.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cone photoreceptors are less sensitive to light and the duration of their photoresponse is shorter than that of rods. In salamander rods and cones, we identified 3 components in membrane currents activated by bright flashes of light: an early receptor current (ERC) resulting from charge displacement within visual pigments, a saturation photocurrent generated by the closure of the cGMP-sensitive channels, and a putative Na-Ca exchanger current. The time courses of both the ERC and the onset of the saturation photocurrent were similar in rods and cones. The putative Na-Ca exchanger current, on the other hand, is 4- to 8-fold faster in cones. The onset of the saturation photocurrent consisted of a delay followed by a fast relaxation with an exponential time course. In both photoreceptor types the delay and the time course of the fast relaxation are dependent on light intensity and reach a limiting value when about 1% of the photopigment is bleached. The limiting value of the delay, about 8 msec, and of the relaxation time constant, about 2 msec, are nearly identical in rods and cones. The near identity of these parameters implies that at least 2 kinetic steps in the activation response of rods and cones are quantitatively similar. These findings suggest that the functional differences between rods and cones may arise from disparities in the processes that restore the components of the phototransduction cascade to their dark level and not from differences in the activation processes.

Back to top

In this issue

The Journal of Neuroscience: 10 (6)
Journal of Neuroscience
Vol. 10, Issue 6
1 Jun 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Activation kinetics of retinal cones and rods: response to intense flashes of light
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Activation kinetics of retinal cones and rods: response to intense flashes of light
S Hestrin, JI Korenbrot
Journal of Neuroscience 1 June 1990, 10 (6) 1967-1973; DOI: 10.1523/JNEUROSCI.10-06-01967.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Activation kinetics of retinal cones and rods: response to intense flashes of light
S Hestrin, JI Korenbrot
Journal of Neuroscience 1 June 1990, 10 (6) 1967-1973; DOI: 10.1523/JNEUROSCI.10-06-01967.1990
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.