Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Tachykinins and calcitonin gene-related peptide enhance release of endogenous glutamate and aspartate from the rat spinal dorsal horn slice

I Kangrga and M Randic
Journal of Neuroscience 1 June 1990, 10 (6) 2026-2038; https://doi.org/10.1523/JNEUROSCI.10-06-02026.1990
I Kangrga
Department of Veterinary Physiology and Pharmacology, Iowa State University 50011.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Randic
Department of Veterinary Physiology and Pharmacology, Iowa State University 50011.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The effects of dorsal root stimulation and of substance P (SP), neurokinin A (NKA), and calcitonin gene-related peptide (CGRP) on the basal release of 9 endogenous amino acids, including glutamate (Glu) and aspartate (Asp), have been investigated using the rat spinal cord slice-dorsal root ganglion preparation and high-performance liquid chromatography with fluorimetric detection. High-intensity repetitive electrical stimulation of a lumbar dorsal root produced a Ca2(+)- dependent increase in the basal release of Asp, Glu, glycine (Gly), serine (Ser), and threonine (Thr). Low concentrations of SP (2 x 10(-7) M) caused a selective increase in the rate of basal release of Glu, whereas higher concentrations (1–5 x 10(-6) M) produced, in addition, an increase in the basal release of Asp. The SP-induced increase of Glu persisted in the absence of external Ca2+, but the effect was blocked by (D-Arg1, D-Pro2, D-Trp7,9, Leu11)-SP, an SP analog claimed to be an antagonist of the synthetic SP. NKA (5 x 10(-7) - 10(-6) M), a related tachykinin coexpressed with SP in primary sensory neurons, enhanced the basal release of Gly. CGRP (10(-7) M) caused a significant, largely Ca2(+)-independent increase in the basal release of Glu and Asp and a decrease in asparagine. SP and CGRP potentiated the electrically evoked release of Glu and Asp. Neonatal capsaicin treatment did not significantly alter the basal efflux of 9 endogenous amino acids from the spinal slices, but it prevented the dorsal root stimulation-evoked release of Asp, Glu, Gly, and Thr and the SP-induced increase in the basal release of Glu. However, the effect of CGRP was not significantly modified by the capsaicin treatment. These results indicate that tachykinins (SP and NKA) and CGRP are capable of modulating the basal and electrically evoked release of endogenous Glu and Asp, and these actions may provide an important mechanism by which the peptides contribute to the regulation of the primary afferent synaptic transmission. The enhancement of the basal and the dorsal root stimulation-evoked release of Glu and Asp by tachykinins and CGRP may have important physiological implications for strengthening the synaptic connections in the spinal dorsal horn.

Back to top

In this issue

The Journal of Neuroscience: 10 (6)
Journal of Neuroscience
Vol. 10, Issue 6
1 Jun 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Tachykinins and calcitonin gene-related peptide enhance release of endogenous glutamate and aspartate from the rat spinal dorsal horn slice
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Tachykinins and calcitonin gene-related peptide enhance release of endogenous glutamate and aspartate from the rat spinal dorsal horn slice
I Kangrga, M Randic
Journal of Neuroscience 1 June 1990, 10 (6) 2026-2038; DOI: 10.1523/JNEUROSCI.10-06-02026.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Tachykinins and calcitonin gene-related peptide enhance release of endogenous glutamate and aspartate from the rat spinal dorsal horn slice
I Kangrga, M Randic
Journal of Neuroscience 1 June 1990, 10 (6) 2026-2038; DOI: 10.1523/JNEUROSCI.10-06-02026.1990
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.