Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Construction of a protoglomerular template by olfactory axons initiates the formation of olfactory glomeruli in the insect brain

LA Oland, G Orr and LP Tolbert
Journal of Neuroscience 1 July 1990, 10 (7) 2096-2112; https://doi.org/10.1523/JNEUROSCI.10-07-02096.1990
LA Oland
Arizona Research Laboratories, University of Arizona, Tucson 85721.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Orr
Arizona Research Laboratories, University of Arizona, Tucson 85721.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LP Tolbert
Arizona Research Laboratories, University of Arizona, Tucson 85721.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Olfactory glomeruli in insects share many features of organization with their vertebrate counterparts, and yet offer distinct advantages for study of neuronal development. Previous studies have revealed that the olfactory lobes of the brain of the moth Manduca sexta arise postembryonically and that glomeruli in the lobe are induced by olfactory afferent axons (Hildebrand et al., 1979; Oland and Tolbert, 1987). In the present study, we have used the Golgi method, intracellular labeling of neurons with Lucifer yellow, and electron microscopy to follow neuronal development in the antennal lobe through the period when glomeruli develop. Our results, taken together with other results from our laboratory, suggest that olfactory sensory axons have the intrinsic ability to form protoglomeruli, and that an interaction between these axons and glial cells (but not the majority of the neurons of the antennal lobe) causes the glial cells to surround the protoglomeruli. Ingrowth of the neurites of most antennal-lobe neurons into the protoglomeruli occurs after a small delay and appears to be constrained to glomerular units by the presence of the glial boundaries. Synapses, initially not detected in the protoglomeruli, begin to appear as soon as the neurites of antennal-lobe neurons appear in the glomeruli. Thus, antennal axons, instead of immediately seeking out postsynaptic targets, first form the template for organization of future glomeruli. The neurites of most of the neurons of the antennal lobe grow outward to meet the olfactory sensory axons, and in doing so, join with these axons to form glomeruli. Preliminary results concerning the development of a second class of neuron in the lobe, the projection neurons, indicate that at least some of these neurons may arborize in the region of the protoglomeruli very early and therefore participate with the afferent axons in laying the foundation for glomeruli.

Back to top

In this issue

The Journal of Neuroscience: 10 (7)
Journal of Neuroscience
Vol. 10, Issue 7
1 Jul 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Construction of a protoglomerular template by olfactory axons initiates the formation of olfactory glomeruli in the insect brain
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Construction of a protoglomerular template by olfactory axons initiates the formation of olfactory glomeruli in the insect brain
LA Oland, G Orr, LP Tolbert
Journal of Neuroscience 1 July 1990, 10 (7) 2096-2112; DOI: 10.1523/JNEUROSCI.10-07-02096.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Construction of a protoglomerular template by olfactory axons initiates the formation of olfactory glomeruli in the insect brain
LA Oland, G Orr, LP Tolbert
Journal of Neuroscience 1 July 1990, 10 (7) 2096-2112; DOI: 10.1523/JNEUROSCI.10-07-02096.1990
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.