Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Differential involvement of protein kinase C isozymes in Alzheimer's disease

E Masliah, G Cole, S Shimohama, L Hansen, R DeTeresa, RD Terry and T Saitoh
Journal of Neuroscience 1 July 1990, 10 (7) 2113-2124; https://doi.org/10.1523/JNEUROSCI.10-07-02113.1990
E Masliah
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Cole
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Shimohama
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L Hansen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R DeTeresa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RD Terry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T Saitoh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Decreased levels of protein kinase C (PKC) and a reduction in the in vitro phosphorylation of a Mr 86,000 protein (P86), the major PKC substrate, are biochemical characteristics of brain tissue from patients with Alzheimer's disease (AD) (Cole et al., 1988). In the current study, we utilized antibodies against individual isozymes of PKC to assess the degree of involvement of different PKC isoforms in AD. The concentration of PKC(beta II) was lower in particulate fractions prepared from AD hippocampal and cortical tissue than in controls and higher in AD cytosol fractions from the cortex than in controls. Immunohistochemical studies in AD neocortex revealed reduced numbers of anti-PKC(beta II)-immunopositive neurons and diminished staining intensity. In contrast, AD hippocampal neurons in CA3-CA4 were more intensely stained with anti-PKC(beta II) antiserum than were controls. The concentration of PKC(beta I) was lower in particulate fractions prepared from AD hippocampus than in controls and was higher in soluble fractions prepared from AD cortex than in controls. The concentration of PKC(alpha) was lower in AD particulate fractions than in controls in the hippocampus. Immunohistochemistry with PKC(alpha) antiserum revealed moderately intense neuron staining and an intense staining of glial cells in AD neocortex. The concentrations and histochemical distributions of PKC(gamma) were not altered in the disease. PKC immunoreactivity was also found in neuritic plaques. The staining patterns of neuritic plaques with different isoform antibodies varied considerably. Anti-PKC(alpha) faintly stained entire plaques and surrounding glial cells; anti-PKC(beta I) stained dystrophic plaque neurites; and anti-PKC(beta II) stained the amyloid-containing portions of plaques.

Back to top

In this issue

The Journal of Neuroscience: 10 (7)
Journal of Neuroscience
Vol. 10, Issue 7
1 Jul 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential involvement of protein kinase C isozymes in Alzheimer's disease
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Differential involvement of protein kinase C isozymes in Alzheimer's disease
E Masliah, G Cole, S Shimohama, L Hansen, R DeTeresa, RD Terry, T Saitoh
Journal of Neuroscience 1 July 1990, 10 (7) 2113-2124; DOI: 10.1523/JNEUROSCI.10-07-02113.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Differential involvement of protein kinase C isozymes in Alzheimer's disease
E Masliah, G Cole, S Shimohama, L Hansen, R DeTeresa, RD Terry, T Saitoh
Journal of Neuroscience 1 July 1990, 10 (7) 2113-2124; DOI: 10.1523/JNEUROSCI.10-07-02113.1990
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.