Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of D1 and D2 dopamine agonists on caudate-putamen neurons and relieve D2 receptors from the necessity of D1 receptor stimulation

XT Hu, SR Wachtel, MP Galloway and FJ White
Journal of Neuroscience 1 July 1990, 10 (7) 2318-2329; DOI: https://doi.org/10.1523/JNEUROSCI.10-07-02318.1990
XT Hu
Neuropsychopharmacology Laboratory, Wayne State University School of Medicine, Lafayette Clinic, Detroit, Michigan 48207.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SR Wachtel
Neuropsychopharmacology Laboratory, Wayne State University School of Medicine, Lafayette Clinic, Detroit, Michigan 48207.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MP Galloway
Neuropsychopharmacology Laboratory, Wayne State University School of Medicine, Lafayette Clinic, Detroit, Michigan 48207.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
FJ White
Neuropsychopharmacology Laboratory, Wayne State University School of Medicine, Lafayette Clinic, Detroit, Michigan 48207.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Extracellular single unit recording and microiontophoretic techniques were used to determine the sensitivities and interactions of D1 and D2 dopamine (DA) receptors in the caudate putamen (CPu) of rats that were denervated of DA by intraventricular injections of the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA). Seven to 10 d after the 6-OHDA injection, DA levels in the ipsilateral CPu were reduced to 11.8% of control. Current-response curves revealed that the inhibitory responses of CPu neurons to microiontophoretic administration of both the selective D1 receptor agonist SKF-38393 and the selective D2 receptor agonist quinpirole were significantly increased in 6-OHDA-pretreated rats, suggesting up-regulation of both receptor subtypes. Although our previous studies have established that D1 receptor activation is normally required for (enables) the inhibitory effects of selective D2 agonists in the CPu, this requirement was no longer evident in 6-OHDA- denervated rats. Whereas acute DA depletion [produced by the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine (AMPT)] attenuated the inhibitory effects of quinpirole on CPu neurons, long-term DA denervation (produced by 6-OHDA) enhanced the inhibitory effects of the D2 agonist. The enhanced effects of quinpirole in 6-OHDA-lesioned rats were not due to residual DA stimulating supersensitive D1 receptors (i.e., enabling) since further DA depletion (99.7%), produced by acute administration of AMPT in 6-OHDA-lesioned rats, failed to diminish the inhibitory efficacy of quinpirole. In addition to relieving D2 receptors from the need for D1 receptor-mediated enabling, 6-OHDA lesions also abolished the normal synergistic relationship between the receptor subtypes since low (subinhibitory) currents of SKF-38393 (4 nA) failed to potentiate the inhibitory effects of quinpirole on CPu neurons in lesioned rats. Similar findings (i.e., supersensitivity and loss of synergistic effects) were obtained from rats that had received repeated pretreatment with reserpine (2.5 mg/kg) for 4 d, indicating that these effects of 6-OHDA lesions were due to the depletion of synaptic DA rather than to the structural loss of DA terminals. Therefore, both the quantitative (potentiation) and the qualitative (enabling) synergistic effects between D1 and D2 receptors in the rat CPu were abolished when these receptors were functionally supersensitive. The present study provides electrophysiological support for previous behavioral studies indicating that the requirement of D1 receptor stimulation for D2 receptor-mediated functional effects (enabling) is not maintained in rats chronically depleted of DA by either 6-OHDA lesions or repeated reserpine.

Back to top

In this issue

The Journal of Neuroscience: 10 (7)
Journal of Neuroscience
Vol. 10, Issue 7
1 Jul 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of D1 and D2 dopamine agonists on caudate-putamen neurons and relieve D2 receptors from the necessity of D1 receptor stimulation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of D1 and D2 dopamine agonists on caudate-putamen neurons and relieve D2 receptors from the necessity of D1 receptor stimulation
XT Hu, SR Wachtel, MP Galloway, FJ White
Journal of Neuroscience 1 July 1990, 10 (7) 2318-2329; DOI: 10.1523/JNEUROSCI.10-07-02318.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of D1 and D2 dopamine agonists on caudate-putamen neurons and relieve D2 receptors from the necessity of D1 receptor stimulation
XT Hu, SR Wachtel, MP Galloway, FJ White
Journal of Neuroscience 1 July 1990, 10 (7) 2318-2329; DOI: 10.1523/JNEUROSCI.10-07-02318.1990
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.