Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro

PB Manis
Journal of Neuroscience 1 July 1990, 10 (7) 2338-2351; https://doi.org/10.1523/JNEUROSCI.10-07-02338.1990
PB Manis
Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Intracellular recordings were made from neurons of the guinea pig dorsal cochlear nucleus in an in vitro brain slice preparation. The membrane properties of the cells were studied, and the membrane potentials were manipulated by current injection to determine how intrinsic conductances might alter the cell discharge patterns. Eleven cells were marked with Lucifer yellow. Ten of these cells were identified as the large pyramidal cells of layer 2 of this nucleus, and 1 cell was identified as a “vertical” cell in layer 3. Two kinds of action potentials were observed: simple spikes and complex spikes. This report discusses only cells with simple spikes. Simple spiking cells (60/72 recorded cells; all stained cells were simple spiking cells) discharged in a regular fashion with depolarization, and had linear frequency-current relationships up to 2 nA with a mean slope of 116 Hz/nA. The discharge rate was approximately constant throughout the current pulse. Responses of simple spiking cells to depolarizing current steps superimposed on a steady-state membrane hyperpolarization were studied. When the membrane has been held hyperpolarized, small current pulses produce a long-latency regular train of action potentials. Larger current pulses superimposed on membrane hyperpolarization can produce a short-latency action potential followed by a long silent interval (i.e., a long first interspike interval), and finally a regular train of spikes. It is concluded that the membrane conductances of DCN pyramidal cells are capable of generating at least 3 discharge patterns (regular firing, long first spike latency, and long first interspike interval) depending on the state of the membrane potential prior to a depolarizing current step. These responses are similar to the “chopper,” “buildup,” and “pauser” discharge patterns reported for these cells in vivo in response to tone bursts. The modulation of the intrinsic membrane conductances by membrane polarization and the possible contribution of these conductances to the generation of DCN discharge patterns provide new insights into the mechanisms underlying the responses of DCN cells to acoustic stimuli.

Back to top

In this issue

The Journal of Neuroscience: 10 (7)
Journal of Neuroscience
Vol. 10, Issue 7
1 Jul 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro
PB Manis
Journal of Neuroscience 1 July 1990, 10 (7) 2338-2351; DOI: 10.1523/JNEUROSCI.10-07-02338.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Membrane properties and discharge characteristics of guinea pig dorsal cochlear nucleus neurons studied in vitro
PB Manis
Journal of Neuroscience 1 July 1990, 10 (7) 2338-2351; DOI: 10.1523/JNEUROSCI.10-07-02338.1990
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.