Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems

M Steriade, S Datta, D Pare, G Oakson and RC Curro Dossi
Journal of Neuroscience 1 August 1990, 10 (8) 2541-2559; DOI: https://doi.org/10.1523/JNEUROSCI.10-08-02541.1990
M Steriade
Laboratoire de Neurophysiologie, Faculte de Medecine, Universite Laval, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Datta
Laboratoire de Neurophysiologie, Faculte de Medecine, Universite Laval, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Pare
Laboratoire de Neurophysiologie, Faculte de Medecine, Universite Laval, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Oakson
Laboratoire de Neurophysiologie, Faculte de Medecine, Universite Laval, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RC Curro Dossi
Laboratoire de Neurophysiologie, Faculte de Medecine, Universite Laval, Quebec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This study was performed to examine the hypothesis that thalamic- projecting neurons of mesopontine cholinergic nuclei display activity patterns that are compatible with their role in inducing and maintaining activation processes in thalamocortical systems during the states of waking (W) and rapid-eye-movement (REM) sleep associated with desynchronization of the electroencephalogram (EEG). A sample of 780 neurons located in the peribrachial (PB) area of the pedunculopontine tegmental nucleus and in the laterodorsal tegmental (LDT) nucleus were recorded extracellularly in unanesthetized, chronically implanted cats. Of those neurons, 82 were antidromically invaded from medial, intralaminar, and lateral thalamic nuclei: 570 were orthodromically driven at short latencies from various thalamic sites: and 45 of the latter elements are also part of the 82 cell group, as they were activated both antidromically and synaptically from the thalamus. There were no statistically significant differences between firing rates in the PB and LDT neuronal samples. Rate analyses in 2 distinct groups of PB/LDT neurons, with fast (greater than 10 Hz) and slow (less than 2 Hz) discharge rates in W, indicated that (1) the fast-discharging cell group had higher firing rates in W and REM sleep compared to EEG- synchronized sleep (S), the differences between all states being significant (p less than 0.0005); (2) the slow-discharging cell group increased firing rates from W to S and further to REM sleep, with significant difference between W and S (p less than 0.01), as well as between W or S and REM sleep (p less than 0.0005). Interspike interval histograms of PB and LDT neurons showed that 75% of them have tonic firing patterns, with virtually no high-frequency spike bursts in any state of the wake-sleep cycle. We found 22 PB cells that discharged rhythmic spike trains with recurring periods of 0.8–1 sec. Autocorrelograms revealed that this oscillatory behavior disappeared when their firing rate increased during REM sleep. Dynamic analyses of sequential firing rates throughout the waking-sleep cycle showed that none of the full-blown states of vigilance is associated with a uniform level of spontaneous firing rate. Signs of decreased discharge frequencies of mesopontine neurons appeared toward the end of quiet W, preceding by about 10–20 sec the most precocious signs of EEG synchronization heralding the sleep onset. During transition from S to W, rates of spontaneous discharges increased 20 sec before the onset of EEG desynchronization.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 10 (8)
Journal of Neuroscience
Vol. 10, Issue 8
1 Aug 1990
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems
M Steriade, S Datta, D Pare, G Oakson, RC Curro Dossi
Journal of Neuroscience 1 August 1990, 10 (8) 2541-2559; DOI: 10.1523/JNEUROSCI.10-08-02541.1990

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems
M Steriade, S Datta, D Pare, G Oakson, RC Curro Dossi
Journal of Neuroscience 1 August 1990, 10 (8) 2541-2559; DOI: 10.1523/JNEUROSCI.10-08-02541.1990
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Neural Stem Cell Transplantation Induces Stroke Recovery by Upregulating Glutamate Transporter GLT-1 in Astrocytes
  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.