Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

GABAB-receptor-mediated inhibition of the N-methyl-D-aspartate component of synaptic transmission in the rat hippocampus

RA Morrisett, DD Mott, DV Lewis, HS Swartzwelder and WA Wilson
Journal of Neuroscience 1 January 1991, 11 (1) 203-209; https://doi.org/10.1523/JNEUROSCI.11-01-00203.1991
RA Morrisett
Department of Medicine (Neurology), Duke University Medical Center, Durham, North Carolina 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DD Mott
Department of Medicine (Neurology), Duke University Medical Center, Durham, North Carolina 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DV Lewis
Department of Medicine (Neurology), Duke University Medical Center, Durham, North Carolina 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HS Swartzwelder
Department of Medicine (Neurology), Duke University Medical Center, Durham, North Carolina 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WA Wilson
Department of Medicine (Neurology), Duke University Medical Center, Durham, North Carolina 27710.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

GABA receptor regulation of NMDA-receptor-mediated synaptic responses was studied in area CA1 of the rat hippocampus using extracellular and intracellular recording techniques. Picrotoxin (PTX) was used to suppress GABAA inhibition and 6,7-dinitroquinoxaline-2,3-dione (DNQX) was used to suppress non-NMDA receptor-mediated responses. In this manner, we were able to avoid the complicating factors caused by potentials induced by other excitatory and inhibitory amino acid receptors. Under these conditions, large NMDA-receptor-mediated EPSPs were observed. When paired stimuli were given at interstimulus intervals from 100 to 400 msec, powerful inhibition of the second response was observed. This inhibition was reversed by the GABAB antagonists phaclofen and 2-hydroxy-saclofen; it was also depressed by removal of Mg2+ from the bath. Examination of non-NMDA receptor- mediated synaptic responses (determined in the presence of D-2-amino-5- phosphonovalerate and PTX) showed no such inhibition, thereby supporting the hypothesis that GABAB inhibition of NMDA EPSPs is postsynaptic. This difference in paired-pulse inhibition of NMDA and non-NMDA EPSPs leads us to conclude that there was no evidence of GABAB- mediated presynaptic inhibition of excitatory transmitter release. Intracellular recordings in the presence of DNQX and PTX revealed a phaclofen-sensitive late IPSP that correlated in time with the period of inhibition of NMDA responses. Taken together, these data suggest that paired-pulse-inhibition of NMDA responses is produced by a GABAB- receptor-mediated hyperpolarization of the postsynaptic membrane, causing an enhanced block of the NMDA channels by Mg2+. Regulation of NMDA-mediated synaptic responses by GABAB receptors constitutes a powerful mechanism for control of a major excitatory system in hippocampal pyramidal cells.

Back to top

In this issue

The Journal of Neuroscience: 11 (1)
Journal of Neuroscience
Vol. 11, Issue 1
1 Jan 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
GABAB-receptor-mediated inhibition of the N-methyl-D-aspartate component of synaptic transmission in the rat hippocampus
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
GABAB-receptor-mediated inhibition of the N-methyl-D-aspartate component of synaptic transmission in the rat hippocampus
RA Morrisett, DD Mott, DV Lewis, HS Swartzwelder, WA Wilson
Journal of Neuroscience 1 January 1991, 11 (1) 203-209; DOI: 10.1523/JNEUROSCI.11-01-00203.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
GABAB-receptor-mediated inhibition of the N-methyl-D-aspartate component of synaptic transmission in the rat hippocampus
RA Morrisett, DD Mott, DV Lewis, HS Swartzwelder, WA Wilson
Journal of Neuroscience 1 January 1991, 11 (1) 203-209; DOI: 10.1523/JNEUROSCI.11-01-00203.1991
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.