Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Calcium activates two types of potassium channels in rat hippocampal neurons in culture

B Lancaster, RA Nicoll and DJ Perkel
Journal of Neuroscience 1 January 1991, 11 (1) 23-30; https://doi.org/10.1523/JNEUROSCI.11-01-00023.1991
B Lancaster
Department of Pharmacology, University of California, San Francisco 94143.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RA Nicoll
Department of Pharmacology, University of California, San Francisco 94143.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DJ Perkel
Department of Pharmacology, University of California, San Francisco 94143.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Several calcium-dependent potassium currents can contribute to the electrophysiological properties of neurons. In hippocampal pyramidal cells, 2 afterhyperpolarizations (AHPs) are mediated by different calcium-activated potassium currents. First, a rapidly activated current contributes to action-potential repolarization and the fast AHP following individual action potentials. In addition, a slowly developing current underlies the slow AHP, which occurs after a burst of action potentials and contributes substantially to the spike- frequency accommodation observed in these cells during a prolonged depolarizing current pulse. In order to investigate the single Ca2(+)- dependent channels that might underlie these currents, we performed patch-clamp experiments on hippocampal neurons in primary culture. When excised inside-out patches were exposed to 1 microM Ca2+, 2 types of channel activity were observed. In symmetrical bathing solutions containing 140 mM K+, the channels had conductances of 19 pS and 220 pS, and both were permeable mainly to potassium ions. The properties of these 2 channels differed in a number of ways. At negative membrane potentials, the small-conductance channels were more sensitive to Ca2+ than the large channels. At positive potentials, the small-conductance channels displayed a flickery block by Mg2+ ions on the cytoplasmic face of the membrane. Low concentrations of tetraethylammonium (TEA) on the extracellular face of the membrane specifically caused an apparent reduction of the large-channel conductance. The properties of the large- and small-conductance channels are in accord with those of the fast and slow AHP, respectively.

Back to top

In this issue

The Journal of Neuroscience: 11 (1)
Journal of Neuroscience
Vol. 11, Issue 1
1 Jan 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Calcium activates two types of potassium channels in rat hippocampal neurons in culture
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Calcium activates two types of potassium channels in rat hippocampal neurons in culture
B Lancaster, RA Nicoll, DJ Perkel
Journal of Neuroscience 1 January 1991, 11 (1) 23-30; DOI: 10.1523/JNEUROSCI.11-01-00023.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Calcium activates two types of potassium channels in rat hippocampal neurons in culture
B Lancaster, RA Nicoll, DJ Perkel
Journal of Neuroscience 1 January 1991, 11 (1) 23-30; DOI: 10.1523/JNEUROSCI.11-01-00023.1991
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.