Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Continuous repetitive stimuli are more effective than bursts for evoking LHRH release in bullfrog sympathetic ganglia

YY Peng and JP Horn
Journal of Neuroscience 1 January 1991, 11 (1) 85-95; DOI: https://doi.org/10.1523/JNEUROSCI.11-01-00085.1991
YY Peng
Department of Physiology, University of Pittsburgh School of Medicine, Pennsylvania 15261.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JP Horn
Department of Physiology, University of Pittsburgh School of Medicine, Pennsylvania 15261.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Effects of different patterns of presynaptic stimulation upon release of leuteinizing hormone releasing hormone (LHRH) were studied by monitoring LHRH-induced slow currents from individual postsynaptic neurons in bullfrog sympathetic ganglia. LHRH-mediated synaptic currents in ganglionic B and C neurons were recorded by a single- electrode voltage-clamp technique. Using continuous stimulation, release increased with frequency between 2 and 20 Hz, then declined. Though bursts of stimuli always evoked more release than continuous stimuli of the same average frequency, they were invariably less effective than continuous stimulation at the intraburstal frequency. This demonstrates that frequency, not bursting structure, governs peptide release. The dependence of release upon stimulus frequency was altered when extracellular Ca2+ concentration was changed, implying that release does not depend intrinsically upon stimulation frequency, but simply on the availability of Ca2+.

Back to top

In this issue

The Journal of Neuroscience: 11 (1)
Journal of Neuroscience
Vol. 11, Issue 1
1 Jan 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Continuous repetitive stimuli are more effective than bursts for evoking LHRH release in bullfrog sympathetic ganglia
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Continuous repetitive stimuli are more effective than bursts for evoking LHRH release in bullfrog sympathetic ganglia
YY Peng, JP Horn
Journal of Neuroscience 1 January 1991, 11 (1) 85-95; DOI: 10.1523/JNEUROSCI.11-01-00085.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Continuous repetitive stimuli are more effective than bursts for evoking LHRH release in bullfrog sympathetic ganglia
YY Peng, JP Horn
Journal of Neuroscience 1 January 1991, 11 (1) 85-95; DOI: 10.1523/JNEUROSCI.11-01-00085.1991
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.