Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors

GM Cahill and JC Besharse
Journal of Neuroscience 1 October 1991, 11 (10) 2959-2971; DOI: https://doi.org/10.1523/JNEUROSCI.11-10-02959.1991
GM Cahill
Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66103.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JC Besharse
Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66103.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A circadian oscillator is located within the eye of Xenopus laevis. This oscillator regulates retinal melatonin synthesis, stimulating it at night. The primary goal of the studies reported here was to define input pathways to this circadian oscillator as a step toward identification of circadian clock mechanisms. A flow-through superfusion culture system was developed to monitor circadian rhythms of melatonin release from individual eyecups. This system was used to determine the effects of light and dopaminergic agents on melatonin production and on the phase of the circadian oscillator. Six hour light pulses suppressed melatonin production and reset the phase of the free- running melatonin rhythm. Light pulses caused phase delays when applied during the early subjective night, phase advances when applied during the late subjective night, and no phase shift when applied during the subjective day. Dopamine receptor agonists mimicked light in suppressing melatonin release and resetting the phase of the circadian rhythm. The phase-response relationship for phase shifts induced by quinpirole, a D2 dopamine receptor agonist, was similar to that for phase shifts induced by light. Pharmacological analysis with selective catecholamine receptor agonists and antagonists indicated that there are pathways to the melatonin-generating system and the circadian oscillator that include D2 dopamine receptors. A D2 receptor antagonist, eticlopride, completely blocked the effects of dopamine on melatonin release and on circadian phase. However, eticlopride did not alter similar effects induced by light, indicating that dopamine- independent pathways exist for light input to these systems. The effects of light and quinpirole on melatonin release and circadian phase were not additive, indicating that the pathways converge. These pathways to the circadian oscillator in the retina present new avenues for pursuit of cellular circadian clock mechanisms.

Back to top

In this issue

The Journal of Neuroscience: 11 (10)
Journal of Neuroscience
Vol. 11, Issue 10
1 Oct 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors
GM Cahill, JC Besharse
Journal of Neuroscience 1 October 1991, 11 (10) 2959-2971; DOI: 10.1523/JNEUROSCI.11-10-02959.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors
GM Cahill, JC Besharse
Journal of Neuroscience 1 October 1991, 11 (10) 2959-2971; DOI: 10.1523/JNEUROSCI.11-10-02959.1991
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.