Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Single odor-sensitive channels in olfactory receptor neurons are also gated by cyclic nucleotides

S Firestein, F Zufall and GM Shepherd
Journal of Neuroscience 1 November 1991, 11 (11) 3565-3572; DOI: https://doi.org/10.1523/JNEUROSCI.11-11-03565.1991
S Firestein
Section of Neurobiology, Yale University Medical School, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F Zufall
Section of Neurobiology, Yale University Medical School, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GM Shepherd
Section of Neurobiology, Yale University Medical School, New Haven, Connecticut 06510.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Olfactory transduction is thought to occur by processes that are mainly restricted to the specialized cilia emanating from the distal end of the receptor neuron's single dendrite. The involvement of a cAMP-based second messenger system seems likely, and a cyclic nucleotide-sensitive current has been recorded in patches of membrane from the cilia. However, the small diameter of the cilia and the high density of channels within the membrane limit the application of the patch recording technique in the cilia. We have found that the cAMP-sensitive channels also exist at a much lower density within the far more accessible dendritic membrane. Recording from on-cell patches, we have observed single-channel activity in response to extracellularly applied odor substances. The channels have a single-channel conductance of 40 pS and a reversal potential near 0 mV. These same channels are activated by treatments that elevate intracellular cyclic nucleotide concentrations. The results provide a direct demonstration that the cyclic nucleotide-gated channel is the conductance pathway for the odor- elicited current.

Back to top

In this issue

The Journal of Neuroscience: 11 (11)
Journal of Neuroscience
Vol. 11, Issue 11
1 Nov 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Single odor-sensitive channels in olfactory receptor neurons are also gated by cyclic nucleotides
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Single odor-sensitive channels in olfactory receptor neurons are also gated by cyclic nucleotides
S Firestein, F Zufall, GM Shepherd
Journal of Neuroscience 1 November 1991, 11 (11) 3565-3572; DOI: 10.1523/JNEUROSCI.11-11-03565.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Single odor-sensitive channels in olfactory receptor neurons are also gated by cyclic nucleotides
S Firestein, F Zufall, GM Shepherd
Journal of Neuroscience 1 November 1991, 11 (11) 3565-3572; DOI: 10.1523/JNEUROSCI.11-11-03565.1991
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Subjects

  • Remembering Gordon Shepherd
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.