Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The molecular and pharmacological properties of muscarinic cholinergic receptors expressed by rat sweat glands are unaltered by denervation

MP Grant, SC Landis and RE Siegel
Journal of Neuroscience 1 December 1991, 11 (12) 3763-3771; DOI: https://doi.org/10.1523/JNEUROSCI.11-12-03763.1991
MP Grant
Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SC Landis
Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RE Siegel
Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previous studies have indicated that denervation of adult rodent sweat glands results in the loss of secretory responsiveness to muscarinic agonists. To elucidate the molecular basis of this loss, we have characterized the muscarinic cholinergic receptor present in adult rat sweat glands and examined the effects of cholinergic denervation on its properties and expression. When homogenates of gland-rich tissue from adult animals were assayed with [N-methyl-3H]-scopolamine, a high- affinity muscarinic antagonist, the concentration of muscarinic receptors was 301 fmol/mg protein and the affinity was 131 pM. Autoradiographic analysis demonstrated that ligand binding sites were detectable only on glands. In competition studies with well- characterized muscarinic agents, the receptor exhibited typical muscarinic pharmacology. Further investigation with the selective muscarinic antagonists 4-diphenylacetoxy-N-methylpiperidine methiodide, pirenzepine, and AF DX-116 revealed that the sweat gland receptor belongs to the M2 glandular pharmacological subtype. In situ hybridization histochemistry with receptor subtype-specific oligonucleotide probes indicated that rat sweat glands express the m3 molecular receptor subtype. Seven days after sciatic nerve transection, when denervated glands were compared to those on the contralateral unoperated side, there was no significant difference either in the concentration or affinity of muscarinic binding sites or in receptor density or distribution. Furthermore, the molecular subtype and the level of its expression were unchanged. Thus, it appears that muscarinic binding sites and m3 receptor mRNA are present in denervated sweat glands that are unresponsive to muscarinic stimulation. These results suggest that the regulation of responsiveness occurs at a point distal to the expression of muscarinic receptors.

Back to top

In this issue

The Journal of Neuroscience: 11 (12)
Journal of Neuroscience
Vol. 11, Issue 12
1 Dec 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The molecular and pharmacological properties of muscarinic cholinergic receptors expressed by rat sweat glands are unaltered by denervation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The molecular and pharmacological properties of muscarinic cholinergic receptors expressed by rat sweat glands are unaltered by denervation
MP Grant, SC Landis, RE Siegel
Journal of Neuroscience 1 December 1991, 11 (12) 3763-3771; DOI: 10.1523/JNEUROSCI.11-12-03763.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The molecular and pharmacological properties of muscarinic cholinergic receptors expressed by rat sweat glands are unaltered by denervation
MP Grant, SC Landis, RE Siegel
Journal of Neuroscience 1 December 1991, 11 (12) 3763-3771; DOI: 10.1523/JNEUROSCI.11-12-03763.1991
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.