Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

NGF rescues substance P expression but not neurofilament or tubulin gene expression in axotomized sensory neurons

J Wong and MM Oblinger
Journal of Neuroscience 1 February 1991, 11 (2) 543-552; DOI: https://doi.org/10.1523/JNEUROSCI.11-02-00543.1991
J Wong
Department of Cell Biology and Anatomy, Chicago Medical School, North Chicago, Illinois 60064.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MM Oblinger
Department of Cell Biology and Anatomy, Chicago Medical School, North Chicago, Illinois 60064.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

A reduction in the supply of retrogradely transported NGF has been proposed as a possible signal for the axotomy response in dorsal root ganglion (DRG) neurons. Components of the axotomy response that have previously been well characterized in axotomized DRG cells include changes in cytoskeletal gene expression and changes in the expression of neurotransmitters/neuromodulators such as substance P. In this study, we examined the role of NGF in the axotomy response by examining protein synthesis and mRNA levels of the low-MW neurofilament protein (NF-L) and beta-tubulin in DRG cells at 1, 7, and 12 d after axotomy with and without continuous administration of exogenous NGF. We also examined substance P levels in the DRG by immunocytochemistry under the same experimental conditions. Sciatic nerves of adult male rats were unilaterally transected at the midthigh level, and the proximal nerve stumps were placed into Silastic tubes connected to osmotic minipumps that were filled with biologically active NGF. NGF (0.5 mg/ml in saline) was continuously infused (0.5 microliter/hr) onto the proximal stumps of transected sciatic nerves for 1–12 d. Control animals were prepared in an identical fashion except that the nerves were treated with saline alone. At death, DRGs were removed from the animals; the L4 experimental DRGs (axotomized) and contralateral L4 DRGs (uninjured) were used immediately for protein synthesis experiments, while the experimental and contralateral L5 DRGs were fixed in 4% paraformaldehyde and subsequently used for in situ hybridization and immunocytochemistry. From another set of experimental animals, the L4 and L5 DRGs were harvested and used for total RNA isolation and RNA blotting experiments. Immunocytochemical studies using a polyclonal antibody to substance P showed that the immunodetectable levels of this peptide decreased to undetectable levels in DRG neurons after axotomy and saline administration. However, in axotomized neurons treated with NGF, the level of immunodetectable substance P did not decrease, but instead, increased over even that present in normal DRG neurons. Pulse labeling of DRGs with 35S-methionine:cysteine followed by 2-dimensional (2D) gel electrophoresis and fluorography revealed that the synthesis of neurofilament (NF) proteins was decreased, while that of tubulin was increased, 12 d after sciatic nerve transection. NGF administration to axotomized neurons did not alter this pattern. Quantitative analysis of in situ hybridizations of DRG neurons and RNA blot analysis with cDNA probes specific for NF-L and beta-tubulin mRNAs showed that NGF treatment of axotomized DRGs did not significantly affect cytoskeletal gene expression at the mRNA level.(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 11 (2)
Journal of Neuroscience
Vol. 11, Issue 2
1 Feb 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
NGF rescues substance P expression but not neurofilament or tubulin gene expression in axotomized sensory neurons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
NGF rescues substance P expression but not neurofilament or tubulin gene expression in axotomized sensory neurons
J Wong, MM Oblinger
Journal of Neuroscience 1 February 1991, 11 (2) 543-552; DOI: 10.1523/JNEUROSCI.11-02-00543.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
NGF rescues substance P expression but not neurofilament or tubulin gene expression in axotomized sensory neurons
J Wong, MM Oblinger
Journal of Neuroscience 1 February 1991, 11 (2) 543-552; DOI: 10.1523/JNEUROSCI.11-02-00543.1991
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.