Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Medial-to-lateral gradient of neostriatal NGF receptors: relationship to cholinergic neurons and NGF-like immunoreactivity

CA Altar, M Dugich-Djordjevic, M Armanini and C Bakhit
Journal of Neuroscience 1 March 1991, 11 (3) 828-836; https://doi.org/10.1523/JNEUROSCI.11-03-00828.1991
CA Altar
Developmental Biology, Genentech, Incorporated, South San Francisco, California 94080.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Dugich-Djordjevic
Developmental Biology, Genentech, Incorporated, South San Francisco, California 94080.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Armanini
Developmental Biology, Genentech, Incorporated, South San Francisco, California 94080.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Bakhit
Developmental Biology, Genentech, Incorporated, South San Francisco, California 94080.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

High-affinity binding sites for recombinant human NGF (rhNGF) were studied in the caudate-putamen of the adult rat and rabbit. Displaceable 125I-rhNGF binding sites were densely distributed throughout the caudate-putamen and were 2–3-fold more prevalant in the ventrolateral and lateral than in the medial caudate-putamen. The amount of nondisplaceable binding did not vary throughout the caudate- putamen. The medial-to-lateral receptor gradient was correlated (r = +0.99) with a 2–3-fold medial-to-lateral increase in ChAT activity. In contrast, NGF-like immunoreactivity (NGF-LI) was prevalent but uniformly distributed in the caudate-putamen. Lesions of intrinsic cholinergic neurons by quinolinic acid produced extensive gliosis in the medial, central, and lateral caudate-putamen, yet 125I-rhNGF binding was decreased in each of these regions. The activity of ChAT and 125I-rhNGF binding throughout the caudate-putamen were each decreased by 40% following quinolinic acid. Binding was not changed after 70–77% dopamine nerve terminal depletions induced by 6- hydroxydopamine, demonstrating a nonglial, nondopaminergic locus for striatal NGF binding sites. The cholinergiclike topography of NGF binding sites throughout the intact caudate-putamen, the parallel decreases of cholinergic neurons and NGF binding sites following intrinsic neuronal loss, and the uniform neostriatal gradient of NGF-LI are consistent with the trophic role of endogenous NGF for cholinergic interneurons of the caudate-putamen.

Back to top

In this issue

The Journal of Neuroscience: 11 (3)
Journal of Neuroscience
Vol. 11, Issue 3
1 Mar 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Medial-to-lateral gradient of neostriatal NGF receptors: relationship to cholinergic neurons and NGF-like immunoreactivity
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Medial-to-lateral gradient of neostriatal NGF receptors: relationship to cholinergic neurons and NGF-like immunoreactivity
CA Altar, M Dugich-Djordjevic, M Armanini, C Bakhit
Journal of Neuroscience 1 March 1991, 11 (3) 828-836; DOI: 10.1523/JNEUROSCI.11-03-00828.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Medial-to-lateral gradient of neostriatal NGF receptors: relationship to cholinergic neurons and NGF-like immunoreactivity
CA Altar, M Dugich-Djordjevic, M Armanini, C Bakhit
Journal of Neuroscience 1 March 1991, 11 (3) 828-836; DOI: 10.1523/JNEUROSCI.11-03-00828.1991
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.