Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Chronic stress-induced acceleration of electrophysiologic and morphometric biomarkers of hippocampal aging

DS Kerr, LW Campbell, MD Applegate, A Brodish and PW Landfield
Journal of Neuroscience 1 May 1991, 11 (5) 1316-1324; https://doi.org/10.1523/JNEUROSCI.11-05-01316.1991
DS Kerr
Department of Neurobiology/Anatomy, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27103.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LW Campbell
Department of Neurobiology/Anatomy, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27103.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MD Applegate
Department of Neurobiology/Anatomy, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27103.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Brodish
Department of Neurobiology/Anatomy, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27103.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PW Landfield
Department of Neurobiology/Anatomy, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27103.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

There is increasing evidence that experimental interventions that alter adrenal corticosteroid plasma concentrations can modulate aging changes in the rodent hippocampus. However, there still is very little evidence that elevation of endogenous corticosteroid levels within physiological ranges, such as occurs during chronic stress, can accelerate hippocampal aging-like changes. In addition, almost all prior intervention studies of corticosteroid effects on brain biomarkers of aging have utilized morphologic measures of aging, and it is not yet clear whether electrophysiologic biomarkers of hippocampal aging can also be accelerated by conditions that elevate corticosteroids. In the present studies, specific pathogen-free rats of three ages (4, 12, and 18 months at the start) were trained for 6 months (4 hr/d, 5 d/week) in a two-way shuttle escape task, using low intensity foot shock. This task induces “anxiety” stress, because animals receive little actual shock, but chronic training in the task has been shown to elevate plasma corticosteroids and to downregulate hippocampal corticosteroid receptors. At the end of 6 months, animals were allowed to recover for 3 weeks and were then assessed in acute, anesthetized preparations on a battery of hippocampal neurophysiological markers known to separate young from aged animals (frequency potentiation, synaptic excitability thresholds, EPSP amplitude). The brains were then fixed and sectioned for quantification of neuronal density in field CA1 (a highly consistent anatomic marker of hippocampal aging). The pattern of stress effects differed considerably across age groups. The two younger stress groups exhibited increased evidence of aging-like neurophysiologic change, but exhibited no indications of accelerated neuronal loss.(ABSTRACT TRUNCATED AT 250 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 11 (5)
Journal of Neuroscience
Vol. 11, Issue 5
1 May 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Chronic stress-induced acceleration of electrophysiologic and morphometric biomarkers of hippocampal aging
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Chronic stress-induced acceleration of electrophysiologic and morphometric biomarkers of hippocampal aging
DS Kerr, LW Campbell, MD Applegate, A Brodish, PW Landfield
Journal of Neuroscience 1 May 1991, 11 (5) 1316-1324; DOI: 10.1523/JNEUROSCI.11-05-01316.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Chronic stress-induced acceleration of electrophysiologic and morphometric biomarkers of hippocampal aging
DS Kerr, LW Campbell, MD Applegate, A Brodish, PW Landfield
Journal of Neuroscience 1 May 1991, 11 (5) 1316-1324; DOI: 10.1523/JNEUROSCI.11-05-01316.1991
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.