Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey

DL Benson, PJ Isackson, SH Hendry and EG Jones
Journal of Neuroscience 1 June 1991, 11 (6) 1540-1564; DOI: https://doi.org/10.1523/JNEUROSCI.11-06-01540.1991
DL Benson
Department of Anatomy, University of California, Irvine 92717.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
PJ Isackson
Department of Anatomy, University of California, Irvine 92717.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SH Hendry
Department of Anatomy, University of California, Irvine 92717.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
EG Jones
Department of Anatomy, University of California, Irvine 92717.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In situ hybridization histochemistry, using cRNA probes, revealed a complementarity in the distributions of cells in the basal ganglia, basal nucleus of Meynert, thalamus, hypothalamus, and rostral part of the midbrain that showed gene expression for glutamic acid decarboxylase (GAD) or the alpha-subunit of type II calcium-calmodulin- dependent protein kinase (CAM II kinase-alpha). Cells in certain nuclei such as the thalamic reticular nucleus, globus pallidus, and pars reticulata of the substantia nigra show GAD gene expression only; others in nuclei such as the basal nucleus of Meynert, medial mamillary nuclei, and ventromedial hypothalamic nuclei show CAM II kinase-alpha gene expression only. A few nuclei, for example, the pars compacta of the substantia nigra and the greater part of the subthalamic nucleus, display gene expression for neither GAD nor CAM II kinase-alpha. In other nuclei, notably those of the dorsal thalamus, and possibly in the striatum, GAD- and CAM II kinase-expressing cells appear to form two separate populations that, in most thalamic nuclei, together account for the total cell population. In situ hybridization reveals large amounts of CAM II kinase-alpha mRNA in the neuropil of most nuclei containing CAM II kinase-alpha-positive cells, suggesting its association with dendritic polyribosomes. The message may thus be translated at those sites, close to the synapses with which the protein is associated. The in situ hybridization results, coupled with those from immunocytochemical staining for CAM II kinase-alpha protein, indicate that CAM II kinase-alpha is commonly found in certain non- GABAergic afferent fiber systems but is not necessarily present in the postsynaptic cells on which they terminate. It appears to be absent from most GABAergic fiber systems but can be present in the cells on which they terminate. This suggests that the kinase may be differentially engaged in pre- and postsynaptic functions at certain synapses.

Back to top

In this issue

The Journal of Neuroscience: 11 (6)
Journal of Neuroscience
Vol. 11, Issue 6
1 Jun 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey
DL Benson, PJ Isackson, SH Hendry, EG Jones
Journal of Neuroscience 1 June 1991, 11 (6) 1540-1564; DOI: 10.1523/JNEUROSCI.11-06-01540.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey
DL Benson, PJ Isackson, SH Hendry, EG Jones
Journal of Neuroscience 1 June 1991, 11 (6) 1540-1564; DOI: 10.1523/JNEUROSCI.11-06-01540.1991
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.