Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture

TL Fletcher, P Cameron, P De Camilli and G Banker
Journal of Neuroscience 1 June 1991, 11 (6) 1617-1626; https://doi.org/10.1523/JNEUROSCI.11-06-01617.1991
TL Fletcher
Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Cameron
Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P De Camilli
Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G Banker
Department of Anatomy, Cell Biology, and Neurobiology, Albany Medical College, New York 12208.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

As a first step toward elucidating mechanisms involved in the sorting of synaptic vesicle proteins in neurons, we have used immunofluorescence microscopy to determine the distribution of two synaptic vesicle proteins, synapsin I and synaptophysin, in hippocampal neurons developing in culture. In mature cultures, synapsin I and synaptophysin immunoreactivity was concentrated in puncta that were restricted to sites where axons contacted neuronal cell bodies or dendrites. Electron-microscopic immunocytochemistry demonstrated that these puncta corresponded to vesicle-filled axonal varicosities that were exclusively presynaptic. At early stages of development, before cell-cell contact, both synapsin I and synaptophysin were preferentially localized in axons, where they were particularly concentrated in the distal axon and growth cone. In axons that did not contact other cells, immunostaining for these two proteins had a granular appearance, which persisted for at least 7 d, but focal accumulations of vesicles comparable to those seen at sites of synaptic contact were not observed. When neurons contacted one another, numerous puncta of synapsin I and synaptophysin formed within the first week in culture. Double-label immunofluorescence demonstrated that the two vesicle antigens were closely codistributed throughout these stages of development. These observations demonstrate that synaptic vesicle proteins assume a polarized distribution within nerve cells beginning early in development, as soon as the axon can be identified. In contrast, differences in microtubule polarity orientation that distinguish mature axons and dendrites, and that have been proposed to account for the selective sorting of some materials in nerve cells, first appear at a subsequent stage of development. The selective distribution of synaptic vesicle proteins to the axon occurs in isolated cells, independent of interactions with other cells. In contrast, the formation of large clusters of vesicles typical of presynaptic specializations requires contact with an appropriate postsynaptic target. Thus, in cultured hippocampal neurons, the localization of synaptic vesicles in presynaptic specializations is the result of sorting mechanisms intrinsic to individual neurons as well as to mechanisms mediated by cell-cell contact.

Back to top

In this issue

The Journal of Neuroscience: 11 (6)
Journal of Neuroscience
Vol. 11, Issue 6
1 Jun 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture
TL Fletcher, P Cameron, P De Camilli, G Banker
Journal of Neuroscience 1 June 1991, 11 (6) 1617-1626; DOI: 10.1523/JNEUROSCI.11-06-01617.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture
TL Fletcher, P Cameron, P De Camilli, G Banker
Journal of Neuroscience 1 June 1991, 11 (6) 1617-1626; DOI: 10.1523/JNEUROSCI.11-06-01617.1991
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.