Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions

BR Noga, DJ Kriellaars and LM Jordan
Journal of Neuroscience 1 June 1991, 11 (6) 1691-1700; DOI: https://doi.org/10.1523/JNEUROSCI.11-06-01691.1991
BR Noga
Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DJ Kriellaars
Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
LM Jordan
Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The descending pathways from the brainstem locomotor areas were investigated by utilizing reversible cooling (to block synaptic or fiber transmission) and irreversible subtotal lesions of the brainstem or spinal cord (C2-C3 level). Experiments were conducted on decerebrate cats induced to walk on a treadmill by electrical stimulation of the brainstem. Locomotion produced by stimulation of the mesencephalic locomotor region (MLR) was not abolished by caudal brainstem lesions that isolated the lateral tegmentum or by extended rostral/caudal dorsal hemisections of the spinal cord. These results demonstrate that the MLR does not require a pathway projecting through the lateral tegmentum of the brainstem or the dorsal half of the spinal cord, as previously suggested (Mori et al., 1977, 1978b; Shik and Yagodnitsyn, 1978; Shik, 1983). Rather, the results indicate that the descending pathway originating from the MLR projects through the medial reticular formation (MedRF) and the ventral half of the spinal cord. Locomotion produced by stimulation of the pontomedullary locomotor region (PLR) was blocked by reversible cooling of either the MedRF or the ventrolateral funiculus of the spinal cord. In some cases, locomotion could be produced by stimulation of the PLR following extended dorsal hemisections of the spinal cord. These results demonstrate that the PLR can also produce locomotion by activation of cells in the MedRF that project caudally through the ventral half of the spinal cord. Stimulation of the PLR could also elicit locomotion following its surgical isolation from the MedRF of the brainstem. Furthermore, lesions of the dorsal spinal cord resulted in the loss of PLR-evoked locomotion in some, but not all, cases. Thus, an alternative projection of the PLR through the dorsal half of the spinal cord (Kazennikov et al., 1980, 1983a,b; Shik, 1983) cannot be ruled out. Overall, these results demonstrate that the PLR is not an essential component of the motor pathway originating from the MLR. The organizational scheme of “brainstem locomotor regions” is discussed in the context of recent information demonstrating a link between the sensory component of the trigeminal system and locomotor pathways (Noga et al., 1988).

Back to top

In this issue

The Journal of Neuroscience: 11 (6)
Journal of Neuroscience
Vol. 11, Issue 6
1 Jun 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions
BR Noga, DJ Kriellaars, LM Jordan
Journal of Neuroscience 1 June 1991, 11 (6) 1691-1700; DOI: 10.1523/JNEUROSCI.11-06-01691.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions
BR Noga, DJ Kriellaars, LM Jordan
Journal of Neuroscience 1 June 1991, 11 (6) 1691-1700; DOI: 10.1523/JNEUROSCI.11-06-01691.1991
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.