Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity

F Worgotter and C Koch
Journal of Neuroscience 1 July 1991, 11 (7) 1959-1979; DOI: https://doi.org/10.1523/JNEUROSCI.11-07-01959.1991
F Worgotter
Computation and Neural Systems Program, California Institute of Technology, Pasadena 91125.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Koch
Computation and Neural Systems Program, California Institute of Technology, Pasadena 91125.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In order to arrive at a quantitative understanding of the dynamics of cortical neuronal networks, we simulated a detailed model of the primary visual pathway of the adult cat. This computer model comprises a 5 degrees x 5 degrees patch of the visual field at a retinal eccentricity of 4.5 degrees and includes 2048 ON- and OFF-center retinal beta-ganglion cells, 8192 geniculate X-cells, and 4096 simple cells in layer IV in area 17. The neurons are implemented as improved integrate-and-fire units. Cortical receptive fields are determined by the pattern of afferent convergence and by inhibitory intracortical connections. Orientation columns are implemented continuously with a realistic receptive field scatter and jitter in the preferred orientations. We first show that realistic ON-OFF-responses, orientation selectivity, velocity low-pass behaviour, null response, and responses to spot stimuli can be obtained with an appropriate alignment of geniculate neurons converging onto the cortical simple cell (Hubel and Wiesel, 1962) and in the absence of intracortical connections. However, the average receptive field elongation (length to width) required to obtain realistic orientation tuning is 4.0, much higher than the average observed elongation. This strongly argues for additional intracortical mechanisms sharpening orientation selectivity. In the second stage, we simulated five different inhibitory intracortical connection patterns (random, local, sparse-local, circular, and cross-orientation) in order to investigate the connection specificity necessary to achieve orientation tuning. Inhibitory connection schemes were superimposed onto Hubel and Wiesel-type receptive fields with an elongation of 1.78. Cross-orientation inhibition gave rise to different horizontal and vertical orientation tuning curves, something not observed experimentally. A combination of two inhibitory schemes, local and circular inhibition (a weak form of cross-orientation inhibition), is in good agreement with observed receptive field properties. The specificity required to establish these connections during development is low. We propose that orientation selectivity is caused by at least three different mechanisms (“eclectic” model): a weak afferent geniculate bias, broadly tuned cross-orientation inhibition, and some iso-orientation inhibition. The most surprising finding is that an isotropic connection scheme, circular inhibition, in which a cell inhibits all of its postsynaptic target cells at a distance of approximately 500 microns, enhances orientation tuning and leads to a significant directional bias. This is caused by the embedding of cortical cells within a columnar structure and does not depend on our specific assumptions.

Back to top

In this issue

The Journal of Neuroscience: 11 (7)
Journal of Neuroscience
Vol. 11, Issue 7
1 Jul 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity
F Worgotter, C Koch
Journal of Neuroscience 1 July 1991, 11 (7) 1959-1979; DOI: 10.1523/JNEUROSCI.11-07-01959.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity
F Worgotter, C Koch
Journal of Neuroscience 1 July 1991, 11 (7) 1959-1979; DOI: 10.1523/JNEUROSCI.11-07-01959.1991
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.