Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Neuroblastoma grafts are noninvasively removed within mouse neocortex by selective laser activation of intracellular photolytic chromophore

JD Macklis and RD Madison
Journal of Neuroscience 1 July 1991, 11 (7) 2055-2062; DOI: https://doi.org/10.1523/JNEUROSCI.11-07-02055.1991
JD Macklis
Department of Neurology, Harvard Medical School, Boston, Massachusetts.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RD Madison
Department of Neurology, Harvard Medical School, Boston, Massachusetts.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Studies of neural cell transplantation would be aided by the ability to damage or destroy, noninvasively and extremely selectively, grafted cells at defined times following their initial implantation. Mechanisms of graft integration and performance could be investigated, also providing insight into natural injury and repair mechanisms. At long wavelengths between 650 and 850 nm, laser energy can penetrate several millimeters of brain tissue without absorption or damage to the unpigmented tissue. However, targeted cells are selectively damaged by illumination at these long wavelengths if they contain latex nanospheres with incorporated cytolytic chromophores (e.g., chlorin e6). Light penetration allows many thousands of cells to be lesioned simultaneously, noninvasively, and deep within a surrounding matrix of other tissue. Such laser-activated damage has been termed laser photolysis (PL). We studied damage to C1300 neuroblastoma (NB) cells grafted into mouse neocortex in vivo by this process of PL. NB cells provided a simple and reproducible model of neural grafting, allowing direct histologic assessment of cellular growth and viability by distinct morphologic and mitotic criteria. Cells were cultured by standard methods, labeled in vitro by brief exposure to nanospheres containing chlorin e6, and grafted to sites within deep layers of mouse neocortex. Mice were exposed to transcranial, fractionated, unfocused pulses of 670-nm-wavelength energy totaling 90–120 J/cm2. We histologically assessed graft growth and cellular viability over a period from 2 d to 4 weeks, measured graft volumes quantitatively during the period of early rapid growth in controls (2 and 7 d), and generated 3-D reconstructions from serial sections to assist in visual analysis.

Back to top

In this issue

The Journal of Neuroscience: 11 (7)
Journal of Neuroscience
Vol. 11, Issue 7
1 Jul 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neuroblastoma grafts are noninvasively removed within mouse neocortex by selective laser activation of intracellular photolytic chromophore
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Neuroblastoma grafts are noninvasively removed within mouse neocortex by selective laser activation of intracellular photolytic chromophore
JD Macklis, RD Madison
Journal of Neuroscience 1 July 1991, 11 (7) 2055-2062; DOI: 10.1523/JNEUROSCI.11-07-02055.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Neuroblastoma grafts are noninvasively removed within mouse neocortex by selective laser activation of intracellular photolytic chromophore
JD Macklis, RD Madison
Journal of Neuroscience 1 July 1991, 11 (7) 2055-2062; DOI: 10.1523/JNEUROSCI.11-07-02055.1991
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.