Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Early postnatal hyperthyroidism alters hippocampal circuitry and improves radial-maze learning in adult mice

H Schwegler, WE Crusio, HP Lipp, I Brust and GG Mueller
Journal of Neuroscience 1 July 1991, 11 (7) 2102-2106; https://doi.org/10.1523/JNEUROSCI.11-07-02102.1991
H Schwegler
Anatomisches Institut, Universitat Freiburg, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
WE Crusio
Anatomisches Institut, Universitat Freiburg, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
HP Lipp
Anatomisches Institut, Universitat Freiburg, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I Brust
Anatomisches Institut, Universitat Freiburg, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
GG Mueller
Anatomisches Institut, Universitat Freiburg, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Inbred mice show strain-specific differences in the hippocampal mossy fiber projection. These differences are most pronounced in the portion of the projection that forms synaptic connections with the basal dendrites of the CA3 pyramidal neurons [intra- and infrapyramidal mossy fiber (IIP-MF) projection]. We have previously demonstrated that the extent of the IIP-MF subfield is positively correlated with the capacity to perform a spatial radial-maze task and that an experimentally induced enlargement of the IIP-MFs, by means of postnatal thyroxine treatment, predicted the ability of adult two-way avoidance learning. In the present study, we tested whether this treatment would also influence radial-maze performance. Forty-five male mouse pups from the inbred strain DBA/2 (chosen because of scanty IIP- MF projection and poor radial-maze learning) were divided into three groups that received daily injections of either 2 micrograms L- thyroxine, an alkaline vehicle solution, or physiological saline. Treatment lasted from postnatal days 0 to 11. At the age of 3 months, these animals were tested in an eight-arm radial maze. The extent of their IIP-MF projections was measured by means of planimetry on Timm- stained sections. Thyroxine-treated animals made significantly fewer errors and had larger IIP-MF projections as compared to both control groups. Within each group, the individual variability of the IIP-MF projection was significantly and positively correlated with performance. We conclude that experimentally modified IIP-MF projections mediate processes underlying spatial working memory. It would appear that the hippocampal circuitry alterations induced by postnatal hyperthyroidism can counteract a hereditary lack of talent, albeit only partially and in selected populations.

Back to top

In this issue

The Journal of Neuroscience: 11 (7)
Journal of Neuroscience
Vol. 11, Issue 7
1 Jul 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Early postnatal hyperthyroidism alters hippocampal circuitry and improves radial-maze learning in adult mice
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Early postnatal hyperthyroidism alters hippocampal circuitry and improves radial-maze learning in adult mice
H Schwegler, WE Crusio, HP Lipp, I Brust, GG Mueller
Journal of Neuroscience 1 July 1991, 11 (7) 2102-2106; DOI: 10.1523/JNEUROSCI.11-07-02102.1991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Early postnatal hyperthyroidism alters hippocampal circuitry and improves radial-maze learning in adult mice
H Schwegler, WE Crusio, HP Lipp, I Brust, GG Mueller
Journal of Neuroscience 1 July 1991, 11 (7) 2102-2106; DOI: 10.1523/JNEUROSCI.11-07-02102.1991
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.