Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Plasticity in the barrel cortex of the adult mouse: effects of chronic stimulation upon deoxyglucose uptake in the behaving animal

E Welker, SB Rao, J Dorfl, P Melzer and H van der Loos
Journal of Neuroscience 1 January 1992, 12 (1) 153-170; DOI: https://doi.org/10.1523/JNEUROSCI.12-01-00153.1992
E Welker
Institute of Anatomy, University of Lausanne, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SB Rao
Institute of Anatomy, University of Lausanne, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Dorfl
Institute of Anatomy, University of Lausanne, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Melzer
Institute of Anatomy, University of Lausanne, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H van der Loos
Institute of Anatomy, University of Lausanne, Switzerland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We investigated experience-dependent regulation of neuronal activity in the whisker-to-barrel pathway of the adult mouse using the autoradiographic deoxyglucose (DG) method. Animals were placed in the Lausanne whisker stimulator, and three of their whisker follicles were passively stimulated for a period of 1, 2, or 4 d. After this period, mice received a dose of DG and were placed in a cage containing a pile of wooden sticks. Mice that underwent the same procedure except the passive stimulation served as controls. Patterns of stimulus-dependent DG uptake were studied in the somatosensory cortex and in the trigeminal sensory brainstem complex. DG uptake in the barrels corresponding to the passively stimulated whiskers was lower than in controls. This decrease was present throughout the radial extent of a barrel column and was observed in all passively stimulated animals. Quantitative analysis confirmed these observations and, furthermore, showed a statistically significant decrease in DG uptake in barrels neighboring the passively stimulated ones. In half of the animals, the brainstem nuclei showed a decreased DG uptake in the representation of the passively stimulated whiskers, whereas in the other animals the pattern of DG uptake was as in controls. We propose that the signs of cortical plasticity are due to a mechanism that operates in layer IV and functions as a gate for peripheral sensory activity to enter cortical circuitry.

Back to top

In this issue

The Journal of Neuroscience: 12 (1)
Journal of Neuroscience
Vol. 12, Issue 1
1 Jan 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Plasticity in the barrel cortex of the adult mouse: effects of chronic stimulation upon deoxyglucose uptake in the behaving animal
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Plasticity in the barrel cortex of the adult mouse: effects of chronic stimulation upon deoxyglucose uptake in the behaving animal
E Welker, SB Rao, J Dorfl, P Melzer, H van der Loos
Journal of Neuroscience 1 January 1992, 12 (1) 153-170; DOI: 10.1523/JNEUROSCI.12-01-00153.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Plasticity in the barrel cortex of the adult mouse: effects of chronic stimulation upon deoxyglucose uptake in the behaving animal
E Welker, SB Rao, J Dorfl, P Melzer, H van der Loos
Journal of Neuroscience 1 January 1992, 12 (1) 153-170; DOI: 10.1523/JNEUROSCI.12-01-00153.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.