Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro

S Davis, SP Butcher and RG Morris
Journal of Neuroscience 1 January 1992, 12 (1) 21-34; DOI: https://doi.org/10.1523/JNEUROSCI.12-01-00021.1992
S Davis
Department of Pharmacology, University of Edinburgh Medical School, Scotland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
SP Butcher
Department of Pharmacology, University of Edinburgh Medical School, Scotland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
RG Morris
Department of Pharmacology, University of Edinburgh Medical School, Scotland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

This series of experiments investigated whether the NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) could induce impairments of spatial learning across a dose range comparable to its impairment of hippocampal long-term potentiation (LTP) in vivo. Estimations of the extracellular concentration of D-AP5 in hippocampus using microdialysis were also made to compare whether these impairments occur at concentrations similar to those required to impair LTP in the in vitro hippocampal slice. Rats were chronically infused with D-AP5 into the lateral ventricle at a range of concentrations (0–50 mM) via osmotic minipumps. They were first trained to find and escape onto a hidden platform in an open-field water maze task. After the behavioral learning, they were anesthetized with urethane and an attempt was made to evoke and monitor hippocampal LTP. Extracellular samples of D-AP5 in hippocampus were then taken using microdialysis, and finally, the animals were killed and tissue samples dissected. The microdialysis and tissue samples were analyzed for D-AP5 content using HPLC with fluorescence detection. The results established, first, that D-AP5 impairs spatial learning in a linear dose-dependent manner, highly correlated with its corresponding impairment of hippocampal LTP in vivo. No concentration of D-AP5 was observed to block LTP without affecting learning. Second, the microdialysis estimates indicated that, subject to certain assumptions, D-AP5 causes these impairments at extracellular concentrations comparable to those that impair LTP in vitro. Third, comparison of the whole tissue and microdialysis samples revealed a concentration ratio of approximately 30:1, indicating that 97% of the intracerebral D-AP5 is inaccessible to the dialysis probes. Infusion of 20 mM EGTA was found to cause a sevenfold increase in D-AP5 in the dialysis perfusates, suggesting that at least part of the inaccessible D-AP5 is trapped by a calcium-dependent mechanism. Two further behavioral control studies indicated that the D-AP5-induced impairment of spatial learning is unlikely to be secondary to a drug- induced motor disturbance, and that the performance of the D-AP5 group whose concentration was just sufficient to block hippocampal LTP completely was statistically indistinguishable from that of a group of rats with bilateral hippocampal lesions induced by ibotenic acid. Taken together, these findings offer support for the hypothesis that activation of NMDA receptors is necessary for certain kinds of learning.

Back to top

In this issue

The Journal of Neuroscience: 12 (1)
Journal of Neuroscience
Vol. 12, Issue 1
1 Jan 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro
S Davis, SP Butcher, RG Morris
Journal of Neuroscience 1 January 1992, 12 (1) 21-34; DOI: 10.1523/JNEUROSCI.12-01-00021.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro
S Davis, SP Butcher, RG Morris
Journal of Neuroscience 1 January 1992, 12 (1) 21-34; DOI: 10.1523/JNEUROSCI.12-01-00021.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.