Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

A distinct type of GD3+, flat astrocyte in rat CNS cultures

PJ Vaysse and JE Goldman
Journal of Neuroscience 1 January 1992, 12 (1) 330-337; DOI: https://doi.org/10.1523/JNEUROSCI.12-01-00330.1992
PJ Vaysse
Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JE Goldman
Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have identified what is apparently a distinct type of astrocyte in primary cultures from several regions of the neonatal rat CNS. These cells express GD3 ganglioside for long periods in vitro, and are GFAP+, but do not express the oligodendrocyte antigens O4 or galactocerebroside (GC). The majority, but not all, are A2B5+. The cells grow in a flat, highly spread morphology with many thin cytoplasmic processes. Gene transfer with a replication-deficient retrovirus combined with immunostaining for astro- and oligodendroglial markers (antibodies to GFAP, GD3 ganglioside, GC, and the A2B5 and O4 antibodies) demonstrated that in the neonatal rat CNS cultures these cells are clonally separate from oligodendrocytes and from the majority of (GD3-) astrocytes. The clonal analysis suggests a distinct progenitor cell and a distinct developmental sequence for these astrocytes.

Back to top

In this issue

The Journal of Neuroscience: 12 (1)
Journal of Neuroscience
Vol. 12, Issue 1
1 Jan 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A distinct type of GD3+, flat astrocyte in rat CNS cultures
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
A distinct type of GD3+, flat astrocyte in rat CNS cultures
PJ Vaysse, JE Goldman
Journal of Neuroscience 1 January 1992, 12 (1) 330-337; DOI: 10.1523/JNEUROSCI.12-01-00330.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A distinct type of GD3+, flat astrocyte in rat CNS cultures
PJ Vaysse, JE Goldman
Journal of Neuroscience 1 January 1992, 12 (1) 330-337; DOI: 10.1523/JNEUROSCI.12-01-00330.1992
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.