Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Pathfinding and target selection by developing geniculocortical axons

A Ghosh and CJ Shatz
Journal of Neuroscience 1 January 1992, 12 (1) 39-55; https://doi.org/10.1523/JNEUROSCI.12-01-00039.1992
A Ghosh
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
CJ Shatz
Department of Neurobiology, Stanford University School of Medicine, California 94305.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

During development of the mammalian cerebral cortex, thalamic axons must grow into the telencephalon and select appropriate cortical targets. In order to begin to understand the cellular interactions that are important in cortical target selection by thalamic axons, we have examined the morphology of axons from the lateral geniculate nucleus (LGN) as they navigate their way to the primary visual cortex. The morphology of geniculocortical axons was revealed by placing the lipophilic tracer Dil into the LGN of paraformaldehyde-fixed brains from fetal and neonatal cats between embryonic day 26 (E26; gestation is 65 d) and postnatal day 7 (P7). This morphological approach has led to three major observations. (1) As LGN axons grow within the intermediate zone of the telencephalon toward future visual cortex (E30– 40), many give off distinct interstitial axon collaterals that penetrate the subplate of nonvisual cortical areas. These collaterals are transient and are not seen postnatally. (2) There is a prolonged period during which LGN axons are restricted to the visual subplate prior to their ingrowth into the cortical plate; the first LGN axons arrive within visual subplate by E36 but are not detected in layer 6 of visual cortex until about E50. (3) Within the visual subplate, LGN axons extend widespread terminal branches. This represents a marked change in their morphology from the simple growth cones present earlier as LGN axons navigate en route to visual cortex. The presence of interstitial collaterals suggests that there may be ongoing interactions between LGN axons and subplate neurons along the entire intracortical route traversed by the axons. From the extensive branching of LGN axons within the visual subplate during the waiting period, it appears that they are not simply “waiting.” Rather, LGN axons may participate in dynamic cellular interactions within the subplate long before they contact their ultimate target neurons in layer 4. These observations confirm the existence of a prolonged waiting period in the development of thalamocortical connections and provide important morphological evidence in support of the previous suggestion that interactions between thalamic axons and subplate neurons are necessary for cortical target selection.

Back to top

In this issue

The Journal of Neuroscience: 12 (1)
Journal of Neuroscience
Vol. 12, Issue 1
1 Jan 1992
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Pathfinding and target selection by developing geniculocortical axons
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Pathfinding and target selection by developing geniculocortical axons
A Ghosh, CJ Shatz
Journal of Neuroscience 1 January 1992, 12 (1) 39-55; DOI: 10.1523/JNEUROSCI.12-01-00039.1992

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Pathfinding and target selection by developing geniculocortical axons
A Ghosh, CJ Shatz
Journal of Neuroscience 1 January 1992, 12 (1) 39-55; DOI: 10.1523/JNEUROSCI.12-01-00039.1992
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.